

How To Use the Total Cost Method
to Compare Coagulants

**LEADERS IN CLEAN WATER
SOLUTIONS**

Objective

**The Importance of Comparing Costs
Across Different Treatment Methods**

Providing a world-class water treatment portfolio with industry leading brands

UltraFLOC® **UltraPAC**®

26

Strategically-located manufacturing facilities

>1 in 3

Americans' drinking water needs served

>40,000

Customer deliveries annually

Widest range of Basicities

Maximize Metal Content

Highest Charge Efficiency

Complete range of Aluminum and Iron Based coagulants, with a range of Polymers

Fuel Efficiency – Automobile Comparison

Scenario:

Buyer commutes ~ 400 total miles weekly

Children + Spouse – *child car seats not required

Current gas price \$3.00 per gallon

Calculation:

Range Rover requires 19 gal to travel 400 miles,
 $\frac{400}{21} = 19$ gal

19 gal * \$3/gal = \$57 per week for the Range Rover

Average MPG ratings for a 2022 year model

Toyota Yaris ~ 37 MPG

Land Rover ~ 21 MPG
Range Rover

Yaris requires 10.8 gal to travel 400 miles,
 $\frac{400}{37} = 10.8$ gal

10.8 gal * \$3 per gal = \$32 per week for the Yaris

Annual Fuel Savings of \$639 if the Yaris is chosen as the commuter vehicle, or \$0.03 / mile

Fuel Efficiency – Automobile Comparison

- **Annual Fuel Savings of \$639 if the Yaris is chosen as the commuter vehicle, or \$0.03 / mile**

Additional variables for buyers to consider to generate an approximate total cost of ownership:

Purchase Price	Appearance
Safety Ratings	Projected Maintenance Costs
Cargo Space	Warranty Costs
Driving Experience	Insurance Costs

Total Cost Can Also Apply to Chemistry!

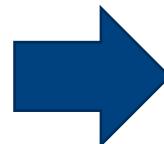
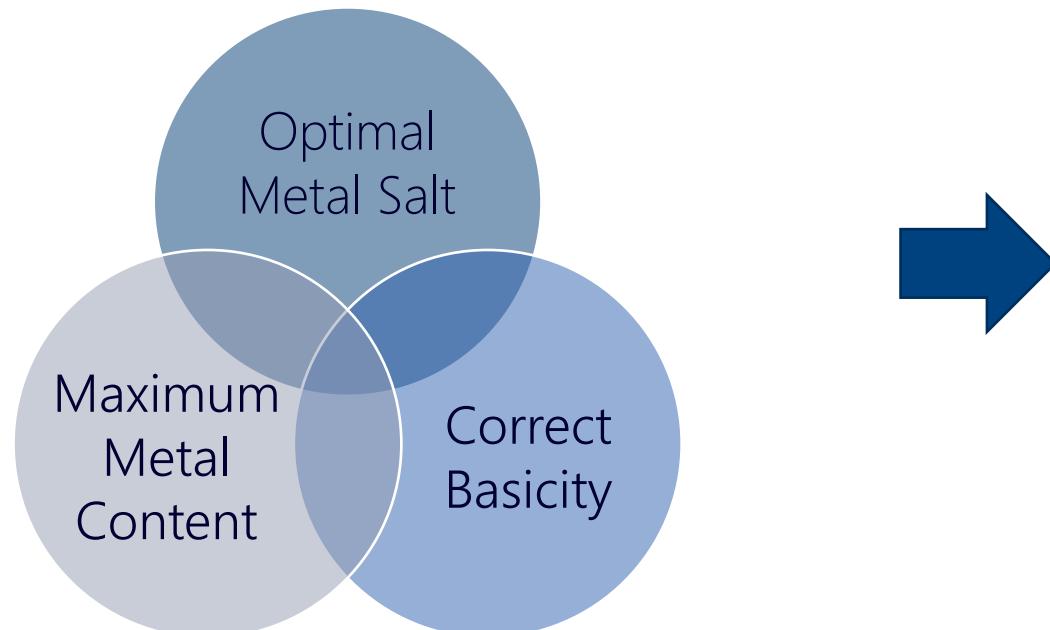
Generate the metrics to contrast

1 Bench Testing

Testing in a controlled environment that mimics actual water treatment plant conditions

2 Representative Trials

The goal of this trial is to provide real-world performance data. Understand what the impact on the process will be



3 Run Total Cost Analysis

Post-trial, analyze the data to calculate the total cost of treating a million gallons of water with the incumbent, and proposed coagulant

Treating Water Effectively Requires the right Coagulant
One size fits all approach is Inefficient

Three Key Components of Effective Coagulants

Coagulant Comparison Example

Scenario Variables

Current program is Aluminum Sulfate 60ppm dosed as-is

The proposed program is Polyaluminum Chloride at 20ppm as-is

Alum program requires 13ppm of 50% Sodium Hydroxide

Polyaluminum Chloride program requires 7ppm 50% Sodium Hydroxide

Facility average production 30 MGD

Alum cost per lb - \$0.08 / lb as-is liquid

Polyaluminum cost per lb - \$0.25 / lb as-is liquid

50% Sodium Hydroxide cost per lb \$0.14 / lb as-is liquid

Coagulant Comparison Example

How do we contrast coagulants?

- Determine the cost of each coagulant per day and then divide by Million Gallons of water treated

Calculations - Math

The current program is Aluminum Sulfate, 60ppm dosed as-is cost of \$0.08 / lb.

$60\text{ppm} \times 30\text{mgd} \times 8.34 = 15,012 \text{ lbs per day}$

$15,012 \text{ lbs} \times \$0.08 / \text{lb} = \$1200.96 \text{ Cost per day}$

Cost per day $\$1200.96 / 30 \text{ mgd} = \$40.03 \text{ per million gallons treated}$

Proposed program Polyaluminum Chloride dosed at 20ppm, cost \$0.25 / lb

$20\text{ppm} \times 30\text{mgd} \times 8.34 = 5,004 \text{ lbs per day}$

$5,004 \text{ lbs} \times \$0.25 / \text{lb} = \$1,251$

$\$1,251 \text{ cost per day} / 30\text{mgd} = \$41.70 \text{ per million gallons treated}$

Coagulant Comparison Example

Calculations – Sodium Hydroxide

Sodium Hydroxide when fed with Aluminum Sulfate 13ppm dosed as-is cost \$0.14 / lb

$13\text{ppm} \times 30\text{mgd} \times 8.34 = 3,252 \text{ lbs per day}$

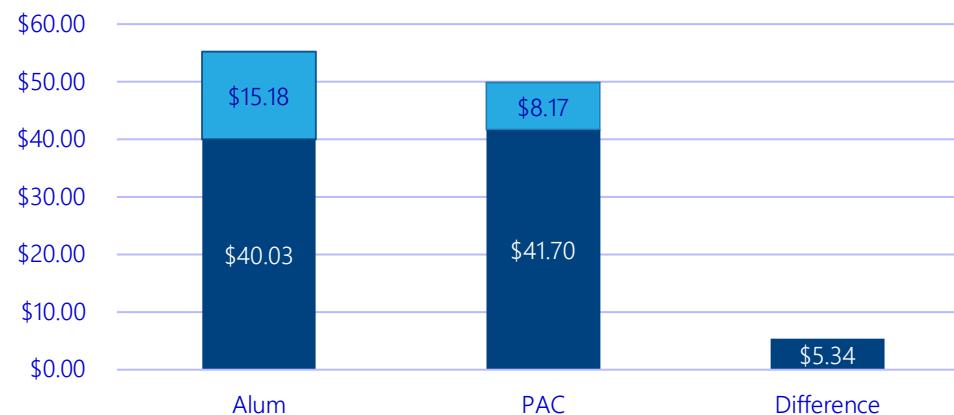
$3,252 \text{ lbs} \times \$0.14 / \text{lb} = \$455.28 \text{ cost per day} / 30 \text{ mgd} = \$15.18 \text{ per million gallons}$

Sodium Hydroxide when fed with Polyaluminum Chloride dosed at 7ppm costing \$0.14 / lb

$7\text{ppm} \times 30\text{mgd} \times 8.34 = 1,751 \text{ lbs per day}$

$1,751 \text{ lbs} \times \$0.14 / \text{lb} = \$245.14 \text{ cost per day} / 30\text{mgd} = \$8.17 \text{ per million gallons}$

Coagulant Comparison Example


Calculations – Total Treatment Cost

Alum Program cost $\$40.03 + \$15.18 = \$55.21 / MG$

Polyaluminum Chloride Program cost $\$41.70 + \$8.17 = \$49.87 / MG$

Difference $\$55.21 - \$49.87 = \$5.34 / MG$

$30MGD \times 365 \text{ days} = 10,950$
Million gallons $\times \$5.34 = \$58,473$

Coagulant Comparison Example

Other Potential Savings – Requires Deliberate Analysis

Customer Service / Reliability of Supply

Sludge Handling Improvements – Labor Savings

Fewer Chemical Deliveries – Labor Savings

Improved Safety Posture - Fewer Chemical Deliveries and Less Handling

Improved Filter Performance – Media Life, Water, and Electricity Savings

Overall Electricity Savings

Thank You for Tuning In!

Follow us on

YouTube

Please send webinar questions to webinar@usalco.com

