

Coagulant Water Balance Calculator

RAW Sulfate mg/L		RAW Sulfate mg/L	
RAW Chloride mg/L		RAW Chloride mg/L	
Incumbent Coagulant		Proposed Coagulant	
Incumbent Avg. Dose ppm		Proposed Avg. Dose ppm	
Incumbent Sulfate (% as Decimal)		Proposed Sulfate (% as Decimal)	
Incumbent Chloride (% as Decimal)		Proposed Chloride (% as Decimal)	
Incumbent CSMR		Proposed CSMR	

To forecast a Chloride-Sulfate-Mass Ratio, we calculate the incoming raw sulfate and chloride and then add the calculated contribution of the current and proposed coagulant to determine each program's CSMR. The CSMR will be used on the *next page* to calculate the potential for impacting scale.

Coagulant	% Chloride (Cl)	% Sulfate (SO ₄)
Aluminum Sulfate	0	23.1
Aluminum Chlorohydrate	8.3	0
Ferric Chloride 40%	25.9	0
Ferric Sulfate 12%	0	30.8

(Continue to page 2 to complete balance calculations)

For more Chloride and Sulfate information contact a USALCO Water Treatment Specialist.
 © 2024 USALCO, LLC. All rights reserved.

Coagulant Water Balance Calculator

This Larson-Skold index measures the ability of scale to prevent lead and copper corrosion. Alkalinity in distribution water is key to providing the necessary buffer when chlorides are present.

The table below incorporates the incumbent and proposed chloride and sulfate figures from the previous page.

$$\text{Index Formula } Ls = (Cl^- + SO_4^{2-}) / \text{Alkalinity}$$

Finished Alkalinity	
Incumbent Coagulant	
Anticipated Chloride	
Anticipated Sulfate	
Alkalinity in Distribution	
Incumbent LS Index	

Proposed Coagulant	
Anticipated Chloride	
Anticipated Sulfate	
Alkalinity in Distribution	
Proposed LS Index	

The Larson-Skold index may be interpreted by the following guidelines:

Index < 0.8	Chlorides and sulfate likely do not interfere with natural film formation
0.8 < index < 1.2	Chlorides and sulfates may interfere with natural film formation
1.2 or Higher	Chlorides and sulfates may cause higher than desired corrosion rates

The index may not correlate well when low or high alkalinity is present

For more information contact a USALCO Water Treatment Specialist.

© 2024 USALCO, LLC. All rights reserved

REV 062624