

Press Release 2025/01

CYCLIZE SELECTED AS ONE OF FIVE WINNERS OF STARTUP CHALLENGE SCHWEDT

Stuttgart/Schwedt, Germany – Cyclize has been selected as a winner of the Startup Challenge Schwedt and will implement a 3,000-hour plasma reformer pilot at the Schwedt industrial site to demonstrate circular, defossilised syngas production from CO₂ and local waste streams in collaboration with PCK Raffinerie, VERBIO and Griesemann Engineering.

Cyclize Wins First Project Call of Startup Challenge Schwedt

Cyclize has been selected as one of the winners of the first Startup Challenge Schwedt, an innovation programme initiated by Startup Labor Schwedt to support industrial transformation projects. Following a competitive selection process, Cyclize prevailed with its technology-focused approach to circular carbon use in the chemical industry and will now enter the implementation phase of its project in Schwedt.

As part of the award, Cyclize receives an official research and development mandate and project funding of up to EUR 300,000. The project is supported by Startup Labor Schwedt together with local industrial partners and is embedded in the scientific framework provided by the University for Sustainable Development Eberswalde (HNEE). The Startup Challenge Schwedt is an EXIST model project funded by the German Federal Ministry for Economic Affairs and Energy (BMWE).

Circular Schwedt: Plasma Reformer Pilot in an Industrial Environment

Within the project “Circular Schwedt”, Cyclize will design, build and operate a containerised plasma reforming pilot plant directly at the Schwedt industrial site. The primary objective is to demonstrate the long-term robustness of Cyclize’s next-generation plasma reformer in a 3,000-hour continuous operation, a key prerequisite for industrial-scale deployment.

The pilot will produce synthesis gas from CO₂ and site-specific hydrocarbon waste streams, representing locally available industrial residues. Key performance indicators include stable syngas quality suitable for downstream chemical use and operation without critical electrode replacement over the full test period. The project scope covers engineering, commissioning, remote operation, data analysis and a durability run designed as a blueprint for future MW-scale plants.

Industrial Partnerships to Enable Carbon Circularity

Cyclize is collaborating with PCK Raffinerie GmbH, VERBIO SE and Griesemann Engineering at the Schwedt site, which is undergoing a broader transformation towards climate-neutral production. The partners contribute industrial waste streams, CO₂ point sources, site integration expertise and engineering support, jointly evaluating the feasibility of circular, defossilised value chains under real industrial conditions.

By converting mixed waste streams and CO₂ into fossil-free synthesis gas, the project aims to demonstrate how existing chemical and refinery infrastructures can be defossilised without disruptive changes to downstream processes. In the longer term, the results are expected to provide the technical basis for a TRL7/8 plant in Schwedt and a potential 10 MW unit processing up to 30,000 tonnes of waste per year, strengthening the region as a hub for circular carbon value chains.

About Startup Labor Schwedt

The Startup Lab Schwedt is an innovation project that offers startups in Schwedt a real-world laboratory for industrial change, enabling them to test and develop their solutions directly in real industry with the aim of making Schwedt a circular industrial location, funded by the [BMWE](#) and the EU. It brings together startups, industry, science, and politics to promote concrete innovations and test new funding instruments, with the support of [Eberswalde University](#) of Applied Sciences.

About Cyclize

Cyclize, a spin-off from the University of Stuttgart, has developed a technology to defossilize the chemical industry using mixed plastic waste and CO₂ as raw materials to produce synthesis gas (a gas mixture of carbon monoxide and hydrogen). This synthesis-gas is a fundamental building block for advanced chemicals and is used in making plastics, methanol, hydrogen, and e-fuels. Until now, synthesis gas has been obtained through the linear use of fossil resources such as natural gas. The innovative plas-mabased process replaces fossil resources with waste materials, enabling a circular carbon economy and avoiding hundreds of megatons of CO₂ annually by 2050.

PRESS

Anja Schröder

E-mail: press@cyclize.de

Phone: +49 152 07203249

Web & Social

Website: cyclize.de

LinkedIn: <https://www.linkedin.com/company/cyclize/>