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The Challenge
Modern biology struggles to predict and control cellu
signaling is complex and context-dependent. Current meth
trial and error.

The Cellular Intelligence Solution
Cellular Intelligence is building the first Universal Virtual Cell-Signaling Model: a
foundation model capable of predicting how any cell in any state changes in response
to external signals.

The Competitive Advantage
e Unrivaled Data Scale: Utilizing a proprietary capsule-based platform, Cellular

Intelligence generates massive, context-rich datasets—scaling to millions of
unique perturbation conditions—to solve the problem of context dependence.

e Static vs. Dynamic States: While others profile cells in fixed states, we use
human stem cells to decode the combinatorial signaling logic that determines
cellular behavior and ultimately cell fate, turning the biological mystery of how
cell types are made into a tractable engineering challenge. .

Core Architecture

Our framework is built on a synergistic feedback loop between massive-scale data
generation and predictive modeling. This proprietary capsule data engine covers
the astronomical search space of cell signaling, distilling it into the context-rich,
high-fidelity datasets required to train transformer models to learn the fundamental
“grammar” of cellular signaling. As our data scales, these architectures will evolve
from discrete response predictions to high-resolution continuous-time models of
biological behavior, culminating in a universal simulation engine that enables the
engineering of cell fate.

Translational Impact

By transforming biology into a predictive engineering discipline, Cellular Intelligence
enables in silico control of cellular behavior, with applications ranging from rational
protocol design for regenerative medicine to context-specific drug effect prediction
and systematic disease modeling. This fundamentally transforms the ability to
discover new treatments and save patient lives.
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1.

A New Era of Cellular Control:
From Empirical Biology to
Predictive Control

A fundamental challenge in modern biology is
that of precise, engineered cellular control. Cells
possess their own language for communicating
with each other—cell signaling—which directs
core biological processes like development and is
frequently dysregulated in disease.

Remarkably, biology achieves this complexity
usingasurprisingly concise vocabulary: onlyaround
20 fundamental molecular signaling pathways
have been identified to date. It is the combinations
and orders in which they are used that underlies
how such a small number of pathways can give
rise to the staggering diversity of human cell types
and states. In principle, because these pathways
are readily manipulated by small molecules, they
provide a potent mechanism through which we
could control cellular decision-making.

However, despite decades of effort, we have not
yet deciphered the grammar of this language. Today,
the effects of a given signal are largely determined
through an empirical, trial-and-error process. This is
due to two compounding challenges:

1. Combinatorial Complexity: The sheer number
of signal combinations limits systematic
experimental dissection.

2. Context Dependence: The effect of a signal
depends heavily on the state of the cell prior to
receiving it.

The Human Cost of Technical Limitations. The
failure to decode the logic of cell signaling is not
just a scientific bottleneck, but a systemic barrier
to progress and, consequently, a delay in saving
lives. The inability to predict cellular behavior stalls
progress in regenerative medicine, where scientists
painstakingly test countless combinations to guide

A major bottleneck in modern medicine is the inability to predict how different cells
respond to signals. We are replacing slow, manual experimentation with a predictive
model that handles this complexity, accelerating the path to life-saving therapies.

stem cells into desired tissues, and in pharmacology,
where therapies fail because we cannot foresee
how diseased cells will react.

Patients waiting for organ transplants,
individuals with genetic disorders, and the
unfulfilled promise of personalized medicine cannot
afford another decade of manual optimization.
Our urgency to move beyond trial-and-error
experimentation is driven by patient need.

CELLULAR INTELLIGENCE’S
VISION

This white paper outlines Cellular Intelligence’s
solution to the challenge of predicting and
controlling cellular behavior: the construction of
the first Universal Virtual Cell-Signaling Model,
a platform intended to compute how any cell state
will change in response to external signals.

By combining the paradigm of developmental
biology—nature’s own proving ground—with our
proprietary capsule platform, we transform cell
signaling from an empirical art into an engineering
discipline built for therapeutic design. We aim to
unlock high-impact applications: from guided cell
therapies that replace lost tissues, to context-
specific drug response prediction, to new ways of
modeling disease as signaling network failures.

Cells possess their own language for
communicating with each other



Whatis a
Virtual Cell-Signaling
Model?

The virtual cell-signaling model acts as a computational twin, using a cell's initial state
to accurately predict how it responds to signals, thereby replacing trial-and-error with
precise in silico simulation.

In essence, a virtual cell-signaling model is a
predictive map from an initial cell state and an
external signal to the cell’s future state. Formally, it
can be seen as a function:

f(initial cell state, signal) -
future cell state

Crucially, the “cell state” encompasses the
cell’s molecular profile (e.g., its transcriptome and
epigenetic status) and functional identity—i.e., the
“context” inwhich the signalis being applied [Wagner
et al., 2016]. Here, “signal” refers to a perturbation,
like a small molecule or growth factor, that affects
a particular signaling pathway or pathways, at a
specific dose. The model’s output is a predicted new
cell state (including gene expression changes) after

the cell has been exposed to the signal.

In short, the model answers the question:
“Given this type of cell (stem cell, cancer cell,
neuron) and this signal at this dose, what will the
cell look like and do next?”

This virtual cell-signaling model thus becomes
a computational twin of living cells, allowing us to
simulate how cells in new contexts would respond
to signals. Our hypothesis is that our platform,
based on the differentiation of all human cell types
during development, will provide sufficient data for
our model to generalize, enabling it to predict cell
responses in as yet unseen contexts. This model
will effectively solve the cell-signaling problem,
enabling scientists and engineers to use in silico
experiments to guide real-world decisions.

An example of the rich, multi-step dynamics a virtual cell-signaling model is designed to capture and predict in silico. Time-lapse images of
human iPS cells differentiating toward a musculo-vertebral precursor fate, with green and purple fluorescent reporters marking distinct stages of
maturation. (Credit: K. Zhu, Pourquié Lab)
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3.

A Unique Approach
to Building the “Virtual Cell”

Most Al models in biology fail because they are trained on limited data—like trying
to learn a language by reading just one book. Cellular Intelligence uses stem cells to
generate massive, proprietary datasets that cover the entire ‘tree of life, capturing
how cells behave in every possible context. We use a ‘split-and-pool’ technique to run
millions of unique experiments in parallel, creating the massive, high-quality training
data that is required for a predictive foundation model.

Biology has runinto a complexity barrier that is now
blocking progress. The field requires afundamental
shift in approach, from mapping static cell states to
modeling the dynamic transitions between them.

Thisis the gap that Cellular Intelligenceis built to
fill. Our approach is not just incrementally better—it
is fundamentally different in how it tackles scale and
complexity. Our key insight at Cellular Intelligence is
that building a universal machine learning model
for cellular signaling requires the interrogation of
signaling across a very large number of contexts.
Virtually all similar efforts towards cell foundation
models take the approach of applying as many
perturbations as possible (drug screens, genetic
screens) to a limited number of cell types, often in
the single digits. This limitation is inherent to their
data generation methodology, which is rooted in
existing screening paradigms. Thus, other datasets,
while perturbation-rich, are context-poor, meaning
that they have very limited exposure to different
cellular contexts. Given that context-dependence
is the biggest challenge to predicting the effects of
signaling, such approaches cannot adequately train
amodel that will generalize across contexts.

Our approach takes full advantage of the
paradigm of developmental biology, the natural
process by which stem cells differentiate into all
the different cell types in the human body. Stem
cells have an innate ability to adopt a vast number
of cellular states as guided by cell signaling, hence
providing the ideal platform for generating the rich,
pan-context signaling data required to train general
models of cell signaling. By leveraging the process of
development, we will be able to learn how signaling
works across the widest possible range of human cell

types, enabling us to direct cells towards particular
fates and away from others. Our platform enables us
to explore the order, concentration, and combination
of perturbations in a way that others cannot match.
Our approach has numerous advantages:

* Exponentially Scalable Data Collection via
Capsule Technology: We recognized early that
the biggest blocker to a generalizable signaling
model was data. Traditional experimental
platforms are context-starved—they might test
many perturbations, but only on a handful of cell
states, mosttypically derived from easy-to-use but
lessphysiological cancercells. Cellular Intelligence
overcame this bottleneck with a proprietary
capsule-based context generation system. In our
platform, pluripotent stem cell colonies are grown
in microscale capsules that can be split-and-
pooled through multiple treatment steps, each
capsule accruing a unique barcode to record its
treatment history. This allows us to interrogate an
exponentially expanding set of signaling factors
combinations and of cell states that in principle
can populate the developmental tree with only
linearly increasing effort. For example, in a recent
experiment we started with 30 combinations of
signaling factors and applied them in 3 sequential
steps, theoretically covering 303=27,000 unique
seguences - and indeed we tested all 27K in a
single multiplexed run. Recently, we scaled this
to over 1 million sequential-signal combinations
across potentially thousands of starting cell
contexts. No other effort comes close to this scale
of combinatorial perturbations. This massive,
context-rich dataset is precisely aligned to the



model’s learning objective, and our perturbative
approach provides causal information in the non-
cancer context that observational cell atlases
lack. Cellular Intelligence’s capsule system
effectively turns data generation into a high-
throughput, parallelized endeavor, creating a
competitive moat via data complexity that others
cannot easily match.

Active Learning Loop and Data Augmentation:
Building a predictive modelis only half the battle—
the other half is using it intelligently to accelerate
learning. Cellular Intelligence’s platform creates
a virtuous cycle: we generate perturbation data,
train our model on it, then use that model to
identify the most informative next experiments to
run. Rather than testing perturbations randomly
or exhaustively, the model identifies gaps in its
understanding—perhaps a particular signal’s
effect on a specific cell subtype remains poorly
predicted—and prioritizes those experiments.
This refinement is also guided by our deep
expertise in developmental biology. This targeted
approach means each experimental round
maximally refines the model's capabilities,
dramatically reducing the data needed to
achieve broad predictive power. Over time, this
self-refining cycle yields a model that not only
predicts cellular responses but also efficiently
guides its own improvement.

Critically, we augment this experimental
data with publicly available datasets. Cellular
Intelligence has developed novel computational
techniques to extract signaling information from
existing transcriptomic  datasets—including
cell atlases, differentiation time courses, and
published perturbation studies. While these
public datasets weren’t originally designed to
studysignalinginourframework,ourmethodscan
retroactively infer signal-response relationships
from them, effectively multiplying our training
data many times over. No other virtual cell effort
systematically leverages public data in this way,
giving Cellular Intelligence a unique advantage in
data efficiency and model generalization.

regimens we explore mirror those that could
feasibly be applied in manufacturing or in the
clinic. This means the model’s insights map one-
to-one with actionable protocols. Competing
“virtual cell” projects often use broad functional
genomics data (e.g., gene knockouts or
overexpression in cancer cell lines) that are
valuable for discovery but may not directly
translate to, say, a recipe a cell therapy company
can implement. In contrast, Cellular Intelligence’s
foundation model is directly built to predict the
effects of signaling, for which a plethora of drugs
have beendeveloped, providing astraightforward
path to a variety of biomedical applications. Our
data of sequential small-molecule perturbations
essentially encodes the same “language” the
human embryo uses to guide cell fates, giving
the model a built-in translational grounding.
By coupling the virtual signaling model to
tangible protocols, we ensure that advances
aren’t just academic—they can be immediately
plugged into efforts like regenerative medicine
manufacturing, drug testing pipelines, or disease
modeling experiments. This tight integration of
wet-lab relevance is a major distinguishing factor
for Cellular Intelligence in the landscape.

Taken together, these differentiators—at the
levels of data generation, modeling methodology,
Al-driven  experimentation, and application
focus—create a first-of-its-kind platform. Cellular
Intelligence’s approach isn't simply to build a
larger cell atlas or a clever algorithm in isolation;
it is to simultaneously and synergistically develop
an unprecedented dataset and a specialized
foundation model that together form a self-
improving engine for understanding and controlling
cell signaling. This is our blueprint for a true
foundation model for cell biology.

Cellular Intelligence’s approach isn't simply to build a larger cell
atlas or a clever algorithm in isolation; it is to simultaneously

and synergistically develop an unprecedented dataset and a
specialized foundation model that together form a self-improving
engine for understanding and controlling cell signaling.

Translational Relevance by Design: From
day one, Cellular Intelligence aligned its data
and model to real-world therapeutic contexts.
The signals we test are clinically relevant small
molecules and growth factors that are GMP-
compliant and used in known differentiation
or treatment protocols. The timing and dosing
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Competitive Landscape:
Other Approaches
and How We Differ

Many players in the field are advancing complementary components of a broader
“virtual cell” vision. Efforts by the Chan Zuckerberg Initiative, Genentech/Roche, Xaira
Therapeutics, Tahoe Therapeutics, and the Arc Institute are focusing on mapping
what a cell is (molecular profiling), where it is (spatial profiling), or how it is wired
internally (genetic perturbations). Cellular Intelligence focuses on a distinct challenge:
understanding the cell’s built in control systems (signaling), allowing us to predictably
guide cells towards therapeutic outcomes using their natural mechanisms. We use
stem cells to capture how signaling works across every human tissue, not just a few
artificial cancer cell lines with limited physiological value.

The vision of a “virtual cell” has attracted maps are being built is not always clear. Cellular

significant attention from non-profits, big pharma,
and academic institutes [Tang, 2025; Rood et al.,
2024]. However, “virtual cell” is a broad term. Most
current efforts are focused on mapping the static
geography of cell types or understanding internal
genetic circuitry, and the “purpose” for which such

Intelligence’s distinct focus is on the dynamic
control of these cells through external signaling.

Below, we distinguish Cellular Intelligence’s
approach from other notable initiatives (as of
December 2025):

Semi-permeable capsules are a core part of Cellular Intelligence’s technology stack, enabling sequential signaling studies at a scale
competitors are unable to match. Blue staining marks cells undergoing differentiation down the ectoderm lineage.



CHAN ZUCKERBERG INITIATIVE:
THE UNIVERSAL REFERENCE MAP

The Chan Zuckerberg Initiative (CZI) has invested heavily in its
biomedical research organization, Biohub, to build a definitive
“map” of biology. Through efforts like the CELLXGENE
database and models like TranscriptFormer [Pearce et al.,
2025], they are creating a universal latent space—essentially
a coordinate system that allows scientists to compare gene
expression across species and tissues.

The Distinction: CZI's work is foundational but, at least to
date, largely observational. Their models are excellent
at answering “What is this cell?” or “Where does this cell
sit on the map?” However, because they lack large-scale
perturbation data, they cannot predict “Where will this cell
go if | treat it with Signal X?” CZI provides the atlas; Cellular
Intelligence provides the navigation system to drive through
it. To the extent that CZI is aiming to generate perturbational
data these are genetic perturbations in a limited number of
contexts, like other efforts described below.

GENENTECH/ROCHE: THE SEARCH
ENGINE FOR BIOLOGY

Genentech has pioneered the use of Al to query cellular data,
developing models like SCIMilarity to find identifying patterns
across cell types and diseases [Heimberg et al., 2025]. Their
goal is primarily hypothesis generation—identifying analogs
of a disease state in a different context to uncover new drug
targets.

The Distinction: Like CZI, this approach relies heavily
on searching existing atlases rather than developing a
roadmap for nimbly navigating that space. While Genentech
utilizes some perturbation screens, they generally lack the
massive, time-series signaling data required to learn the
causal relationships required for protocol design. Their
tools are designed to help scientists model disease; Cellular
Intelligence’s platform is designed to engineer cells.

XAIRA THERAPEUTICS: MAPPING
THE WIRING VS. OPERATING THE
CONTROLS

Xairais amajor player tackling the virtual cell from a gene-centric
angle. With datasets like X-Atlas/Orion, they are performing
massive Perturb-seq experiments, systematically knocking out
genes to see how the cell recovers [Huang et al., 2025].

The Distinction: This is a complementary but fundamentally
different problem. If you view the cell as a complex machine,
Xaira is mapping the internal wiring (asking: “What breaks if |
cut this wire?”). Cellular Intelligence is learning to operate the
control panel (asking: “What happens if | turn this knob?”).
While genetic perturbation is powerful for identifying drug
targets, Cellular Intelligence’s focus on extrinsic signaling
is the direct path to regenerative medicine and cell therapy
manufacturing, where the goal is to guide cells to specific
fates without genetically altering them, as well as drug target
identification.

TAHOE THERAPEUTICS AND
THE ARC INSTITUTE: HIGH
PERTURBATION, LOW CONTEXT

The Arc Institute’s recent release of the STATE model,
developed using the Tahoe-100M dataset—covering 100
million cells and roughly 1,100 drugs—is the most comparable
effort to date in terms of scale [Adduri et al, 2025]. It
represents a massive achievement in perturbation biology.

The Distinction: The critical limitation of the Tahoe dataset,
and others like it, is context poverty. Standard screening
paradigms maximize the number of drugs tested, but they test
them on a very small number of contexts (usually cancer cell
lines). However, the central challenge of signaling is that it is
context-dependent—a signal acting on a liver cell does not do
the same thing when acting on a neuron. Cellular Intelligence’s
capsule platform allows us to generate tens of thousands of
distinct biological contexts (intermediate developmental
states) via human pluripotent stem cells (iPSCs). While Tahoe
tests many drugs on a few cell types, Cellular Intelligence tests
the fundamental signals across the entire developmental
tree representing all human cell lineages. This diversity of
context is the mathematical prerequisite for a model that can
truly generalize. Moreover, Tahoe’s approach, while based on
chemical perturbations, is restricted to single applications
of these treatments, barely scratching the surface of the
exponentially large number of orders and doses.
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Applications
and Impact

Traditionally, discovering a new cell differentiation protocol or drug target relies on
luck and brute-force labor. Cellular Intelligence replaces luck with logic. By predicting
how cells respond to signals before experiments begin—whether rationally designing a
protocol for regenerative medicine or searching for a drug to rescue a genetic defect—
our model replaces blind experimentation with calculated prediction, de-risking the
most expensive stages of drug and therapy development.

A successful foundation model for virtual cell
signaling will be transformative, turning what
used to be months-long lab endeavors into
in silico design problems solvable in days. Here
we highlight a few high-impact applications
enabled by Cellular Intelligence’s platform:

* Rational Design of Cell Differentiation
Protocols: Perhaps the most immediate
application is in regenerative medicine and
cell therapy manufacturing. Today, developing
a protocol to differentiate stem cells into a
target cell type (e.g., pancreatic beta cells or
dopaminergic neurons) often takes years of trial-
and-error tweaking of growth factor cocktails
and timing. With a virtual signaling model,
this process becomes systematic. The model
can screen countless candidate protocols
in silico, predicting which sequence of signals
will yield the highest purity of the desired cell
type. This enables rational protocol design:
instead of blind experimentation, researchers
can approach protocol optimization like
engineering—iterating on simulations first, then
only testing the most promising conditions at
the bench. We estimate we can cut protocol
development time from years to months while
achieving cells that more closely resemble their
in vivo counterparts.

* Context-Specific Drug Response Prediction:
The virtual signaling model functions as a
powerful tool for predicting drug effects in
specific cellular contexts. Many drugs behave
differently in different cell types or disease

states—a therapy might cure inflammation
in one tissue but be toxic in another. Using
our model, scientists can simulate how, for
instance, an immune cell from a patient with an
autoimmune disorder will respond to a cytokine
inhibitor compared to a healthy donor. Such
simulations highlight context-specific efficacy
or toxicity early in the R&D process. Moreover,
because our model captures sequential effects,
it can predict outcomes of drug combinations
or scheduling (e.g., finding synergistic timing).
This enables virtual clinical trials on patient-
derived cell models to narrow down to the most
promising interventions before they reach the
clinic.

Genetic Disease Modeling and Phenotypic
Rescue: Our platform offers a direct route to
therapy for genetic disorders by treating the
cell’s signaling network as a correctable circuit.
By generating data from iPSCs derived from
patients with specific genetic mutations, we
can train our model to understand exactly how
a genotype alters signaling logic. Crucially, the
model can then be used in “reverse engineering”
mode: identifying specific small-molecule
signals that compensate for the genetic
defect. For example, if a mutation dampens
a critical pathway, the model might identify a
downstream signal or a parallel pathway that can
be stimulated to restore the healthy phenotype.
This approach allows us to discover small-
molecule treatments for genetic conditions—
offering a scalable, accessible alternative to
complex gene therapies.



* Interpreting Disease as Signaling Network
Failure: Many diseases—from cancer to
diabetes—can be traced to malfunctions in
cellular signaling pathways. Our model provides
a new lens on these pathologies: it can simulate
how cells in a disease state respond abnormally
to signals and help pinpoint what in the signaling
network is broken. By comparing model
predictions between healthy and diseased cell
states, researchers can ask, “Which signal does
the diseased cell fail to handle correctly?” If
the model shows that a certain developmental
signal no longer triggers the expected gene
expression change, that suggests a specific
pathway defect. In this way, the model acts as a
digital twin for diseased cells, revealing failure
points in their internal circuitry and guiding the
search for therapeutic targets that restore
proper signaling.

* Uncovering Hidden Biology and New
Pathways: By systematically exploring such
a vast space of conditions, our platform is
naturally poised to make biological discoveries.
In traditional experiments, scientists often test
hypothesis-driven combinations of signals—
but nature’s combinatorial complexity means
many interactions remain unknown. Cellular
Intelligence’s multiplexed approach casts a wide
net, allowing us to flag serendipitous findings
of “cryptic” pathways or novel cell states. For
example, in our 27,000-condition screen, we
unexpectedly generated notochord-like cells
(a rare embryonic type) from pluripotent stem
cells (only recently discovered in 2024 [Rito

A successful foundation model for virtual cell signaling will
be transformative, turning what used to be months-long lab
endeavors into in silico design problems solvable in days.

et al., 2024]). The model, having seen this,
can generalize and teach us the “recipe” for
rare biology. Moreover, because our model
incorporates literature-based priors, it serves
as a hypothesis generator: if it predicts a strong
outcome that isn’t documented in literature, that
is a cue to investigate “white spots on the map”
of cell signaling.

By enabling these applications, a foundation model
for cell signaling stands to accelerate progress
across biomedicine. It provides a unifying platform
where biologists, bioengineers, and clinicians can
ask “what if” questions - What if | add this factor
at hour 24? What if | inhibit this pathway in a cell
with this mutation? - and get immediate, educated
answers to guide their next steps. The end result
will be faster development of therapies (both
cell-based and traditional drugs), more precise
interventions with fewer failures, and a deeper
understanding of life’s fundamental processes.

Ci CELLULAR INTELLIGENCE
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Progress and Validation

to Date

Cellular Intelligence has successfully executed some of the largest combinatorial
signaling screens in history, scaling to over 1 million unique experimental conditions.
We have proven that our platform can already generate a vast diversity of cell types—
from muscle progenitors to neurons to blood vessel cells—in a single run. We have now
reached a critical inflection point: our data engine is operating at the scale required
to unlock “scaling laws” in biology, where massive datasets yield qualitatively more

powerful and generalizable models.

Cellular Intelligence’s approach is bold, but it is
grounded in concrete progress from our ongoing
research. We have already achieved significant
milestones that validate both the feasibility of our
platform and its early predictive capabilities:

* Unprecedented Data Scale and Diversity:
We have successfully built the world’s first
dataset of sequential cell-signaling responses
at massive scale. In 2024, our team completed
a pilot split-and-pool screen of 27,000 distinct
conditions (3 sequential signal combinations
applied to human iPSC-derived cells). Each
condition is a unique sequence, like “Signal
A (3 days) - Signal B (3 days) - Signal C (3
days)”, and we profiled the cells after the first
signal and the final signal via single-cell RNA
sequencing. Thisexperimentalone producedan
extraordinary variety of outcomes. Remarkably,
after just 3 days (one step), cells in capsules
had already diverged into all major embryonic
lineages (ectoderm, mesoderm, endoderm).
By day 9 (at which point each capsule has seen
a combination of three successive signals),
we observed a rich mosaic of cell types from
those lineages—including neural precursors,
muscle progenitors, gut epithelial cells, blood
vessel cells, and more. This comprehensive
coverage is a strong validation that our capsule
perturbation engine can generate the full
spectrum of cell fates in a controlled way; these
include the same notochordal cells we first

detected in our 27K experiment. These results
confirm that our method doesn’t just produce
“some cells"—it produces almost any cell,
given the right signals, and our data captures
those mappings.

Scaling to 1 Million Conditions: Building on
the 27K-condition success, we immediately
set our sights on scaling up. In mid 2025, we
executed experiments that exposed cells to on
the order of 108 sequences of perturbations.
Initial analysis of the 1M-condition run (which
subsampled cells and capsules at multiple
time points) confirms the trend from the 27K
screen: cells exposed to this vast range of
signal combinations still populate all expected
major cell lineages—demonstrating scalability
without loss of biological breadth. We also see
finer granularity in some cases: for instance,
where we had “muscle precursors” before,
we now see separate clusters for skeletal
vs. cardiac muscle lineage, etc. This gives us
confidence that increasing data density yields
increasing resolution, which will in turn power
the training of increasingly predictive models.
It's important to note that simply generating
data is not our goal—the goal is predictive
power. Our model’s performance (predictive
accuracy) is improving as the dataset grows,
a hallmark of a true foundation model where
more data directly translates into better
generalization.



* TechnicalValidation of Platform Components:
Alongside biological results, we have achieved
numerous technical milestones that de-risk the
platform. We have confirmed that our capsule
barcoding method is reliable and scalable. We
have shown that cells can remain healthy in
capsules through multiple split-and-pool steps,
maintaining viability and proliferative capacity.
Our single-cell sequencing pipelines have been
optimized to handle extremely large libraries,
and we developed cloud-based tools to process
millions of single-cell profiles per run. We have
also begun public data augmentation: by pre-
training on an embryo atlas (public single-cell
RNA-seq from mammalian development) and
fine-tuning on our perturbation data, we expect
to improve model performance [Xu et al.,
2023]. All these pieces—data generation, data
accuracy, model training, and early application—
provide a solid foundation as we move from
prototype to full-scale platform.

In summary, within roughly two years, Cellular
Intelligence hasgone fromconcepttodemonstrating
in vitro and in silico proof-of-concept results. We've
generated orders-of-magnitude more relevant data
than previously available, and we've shown that
this data can power Al models to make non-trivial
predictions in cell biology. Most importantly, we have
validated that biology doesn’t “break” at scale: cells
in our complex experiments still yield biologically
meaningful states (not just random or dead cells).
This de-risks the central hypothesis that a general
signaling model can be learned from these data. The
progress to date sets the stage for the next phase:
scaling up further and delivering on increasingly
ambitious milestones of predictive power and real-
world impact.

Human stem cells enable broad cell-fate coverage. Their capacity to differentiate into diverse lineages supports comprehensive mapping of
cell fates.

Ci CELLULAR INTELLIGENCE
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Architecture
and Training Approach

We are adapting the same “Transformer” architecture that powers ChatGPT, but
instead of predicting the next word in a sentence, our model predicts the next state
of a human cell. By training on our massive proprietary perturbation dataset alongside
public cell atlases, we teach the model to generalize across contexts. This allows us
to learn the fundamental “grammar” of cellular decision-making, transforming biology
into a computable problem.

Building a foundation model for cell signaling
requires more than just data; it requires a
computational framework capable of learning the
complex, non-linear rules of biology. At Cellular
Intelligence, we approachthisasamachine learning
problem defined by high-dimensional states and
causal signaling inputs. Below, we outline our
modeling philosophy, our strategy for architectural
exploration, and the data infrastructure we have
built to power this engine.

THE CORE LEARNING
PROBLEM

Fundamentally, our modelis trained to approximate
a transition function for cellular state. In machine
learning terms, our primary training examples take
the following form:

input transcriptome + input signal »>
output transcriptome

The challenge in learning this function is context
dependence: the same signal (e.g., Wnt activation)
will produce a drastically different output
depending on the input transcriptome.

Because our capsule platform generates massive
variation across both the input transcriptome
(thousands of intermediate developmental states)
and the input signal (dosages and combinations),
we provide the model with the necessary volume
of examples to learn this context-specific logic.
Unlike standard regression models, our goal is to
learn a generalized representation of how signals
perturb cell state manifolds.

ARCHITECTURAL
EXPLORATION

We are currently exploring and benchmarking
several  state-of-the-art  neural network
architectures suited for this high-dimensional,
causal modeling:

* Foundation Embeddings: A prerequisite for
our model is a robust “map” of cell space.
We are developing embedding models that
co-embed our proprietary perturbation data
alongside massive public reference atlases.
This allows us to represent any given cell not
as a list of 20,000 genes, but as a coordinate
in a biologically meaningful latent space. By
grounding our model in this universal reference
frame, we ensure that our predictions obey
biological constraints.



* Transformer-Based Context Modeling:
Transformers have revolutionized language
processing by handling the context of wordsina
sentence. We are applying similar architectures
to biology, where the “context” is the current
state of the cell’s gene regulatory network. We
are exploring transformer backbones that can
attend to the specific combination of genes
active in a cell to determine how to weight the
incoming signal, effectively “reading” the cell’s
state to predict its reaction.

* Temporal Dynamics and Neural ODEs:
Biology happens in continuous time, not just
in discrete steps. To capture the dynamics of
differentiation, we are investigating Neural
Ordinary Differential Equations (Neural
ODEs). These architectures allow us to model
the trajectory of a cell as a continuous flow,
enabling us to predict cell states at time points
we haven’t explicitly sampled and to model the
kinetics of how fast a cell transitions from one
state to another.

DATA AUGMENTATION VIA
PUBLIC KNOWLEDGE

While our proprietary data is the gold standard
for causal ground truth, we amplify its power
by integrating publicly available data. Cellular
Intelligence’s computational team has developed
novel methods to “retroactively” extract signaling
information from existing datasets.

By analyzing time-course data from published
embryology and differentiation papers, we can
infer pairs of (State A) - (State B) transitions. Even
if the original authors did not explicitly structure
their data for machine learning, our pipelines can
ingest these trajectories to generate millions of
additional synthetic training examples. This allows
our model to learn from the collective history
of biological research, using our high-fidelity
proprietary data to fine-tune and validate the
broad patterns learned from the public domain.

TECHNICAL
INFRASTRUCTURE

To support this massive undertaking, we have
established a cloud-native data infrastructure
designed for scale.

* Ingestion Pipelines: We have built automated
pipelines capable of ingesting and normalizing
heterogeneous data sources—ranging from
internal high-throughput sequencing runs to
unstructured public datasets.

* Scalable Compute: Our analysis platform runs
on distributed GPU-based cloud computing
clusters, allowing us to train large-scale models
on high-dimensional single-cell data without
memory bottlenecks.

* Iterative Loop: Our infrastructure is designed
for a tight loop between wet lab and dry lab.
Data from the capsule platform is automatically
processed, quality controlled, and fed into
our modeling environment, allowing our
computational biologists to rapidly iterate
on model architectures as new datasets are
generated.

By combining a rigorous mathematical
formulation of the signaling problem with flexible,
scalable  architecture  exploration, Cellular
Intelligence is laying the groundwork for the first
true simulation engine for cellular engineering.

Ci CELLULAR INTELLIGENCE
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Roadmap
and Milestones

Cellular Intelligence is executing on a clear roadmap to develop and deploy our
foundation model for cell signaling. We are moving systematically: first predicting single
signals, then mastering combinatorial complexity, and finally achieving a universal
model capable of simulating cellular behavior over continuous biological time. This
trajectory moves the field from “discovery by chance™ to “discovery by design,” creating
the infrastructure needed to rapidly deliver clinical solutions.

ALPHA PHASE: ESTABLISHING
THE PREDICTIVE BASELINE

CURRENT FOCUS

In the Alpha phase, our primary objective is to
demonstrate the fundamental ability to predict
the transcriptomic state change induced by a
single signal. While simple in principle, achieving
high accuracy on this task across varying cellular
contexts would represent a significant leap forward
for the field.

KEY GOALS

* Single-Signal Prediction: We aim to achieve
80% accuracy in predicting the transcriptomic
shift of cells treated with any of 10 core signaling
pathways (e.g., Wnt, BMP, FGF, Nodal).

* Contextual Generalization: Crucially, this
accuracy must hold across a diverse set of
starting iPSC-derived contexts, not just a few
celllines.

* Fixed-Interval Training: Initial training will focus
on fixed time intervals (e.g., predicting the state
at t=24 hours given state at t=0).

STATUS

We are currently generating the high-volume
perturbation data required to train this initial model.
We view the successful completion of Alpha as the
core “proof of principle” that context-dependent
signaling is a learnable function.

BETA PHASE: HIGH-FIDELITY &
COMBINATORIAL EXPANSION

TARGET: SURPASSING STATE-
OF-THE-ART

In the Beta phase, we aim to refine the model's
precision and expand its scope to handle the
complexity of real-world biological environments.
At this stage, we expect the model to outperform
existing observational atlases in predicting cell fate.

KEY GOALS

* 90% Accuracy Threshold: We aim to increase
our prediction accuracy to 90% across an
expanded library of signaling pathways and
cellular contexts.

* Public Data Augmentation: We will integrate
massive amounts of publicly available
transcriptomic data (e.g., cell atlases, perturbation
screens) to improve the model's generalization
capabilities, particularly for cell states that are
under-represented in our internal dataset.

* Simultaneous Signal Integration: Moving
beyond single signals, Beta will address
combinatorial signaling—predicting  the
behavior of cells when multiple signals are
appliedsimultaneously (e.g., Wnt + FGF together),
which often yields non-linear synergistic effects.

* Spatial Context: We will begin incorporating
spatial transcriptomics data. This allows the
model to account for cell-cell communication
and local environmental factors (paracrine
signaling) that influence cell fate decisions.



V1 PHASE: THE UNIVERSAL
SIMULATION ENGINE

TARGET: CONTINUOUS TIME &
CHEMICAL UNIVERSALITY

The V1 release represents the full realization of
the virtual cell platform: a dynamic, continuous
simulation engine capable of bridging the gap
between protein signals and small molecule drugs.

KEY GOALS

* Continuous Time Modeling (Neural ODEs):
We will transition from fixed-step predictions
to continuous-time modeling using Neural
Ordinary Differential Equations (Neural
ODEs). This will allow us to query the cell state at
any time point (e.g., t=12.5 hours), enabling the
precise optimization of dosing schedules and
pulse durations.

* Chemical Co-Embedding: We will develop
a chemical co-embedding space, mapping
small molecules to the signaling pathways they
modulate. This allows the model to predict how
a specific chemical inhibitor or agonist affects
a pathway, effectively translating “protein
logic” into “drug logic.” This is a critical feature
for pharmaceutical applications, enabling the
in silico replacement of expensive growth
factors with easily synthesized small molecules.

* Global Generalization: By V1, the model will
leverage a fully integrated dataset of internal
and external data, aiming for high predictive
accuracy across all major germ layers and
standard therapeutic targets.

Beyond V1, our roadmap extends to a Vision 2.0
where the model becomes even more powerful—
potentially incorporating patient-specific genetic
backgrounds (to handle donor variability in cell
responses), modeling cell-cell interactions (like
addingimmune cellsinto the mix forimmunotherapy
design), and integrating other modalities (such as
signaling protein levels, epigenetic states, etc. for
even richer context). The long-term vision is that
Cellular Intelligence’s foundation model evolves
into the “operating system” for cellular engineering,
supporting applications we haven’t yet imagined.
The milestones listed for Alpha, Beta, V1 are how
we get there step by step, de-risking along the way
and delivering value at each stage.

The long-term vision is that Cellular Intelligence’s
foundation model evolves into the “operating system”
for cellular engineering, supporting applications

we haven't yet imagined.
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Conclusion:

From Observation to Engineering

The transition of biology from an empirical science to
an engineering discipline is the defining opportunity
of our time. At Cellular Intelligence, we are building
the infrastructure to drive this transformation in the
domain of cell signaling. By combining the latest
advances in Al with an unprecedented experimental
engine, we are systematically decoding the
“language” of cell fate: the grammar of signals and
contexts that determine whether a cell becomes a
neuron or a muscle, whether it regenerates tissue or
succumbs to disease.

The implications of mastering this language are
profound. We envision a future where the question
“How do | manufacture this tissue?” or “How do |
rescue this diseased cell?”is not answered by years
of trial-and-error at the bench, but by a query to a
foundation model that returns a precise, actionable
protocol. This is the future Cellular Intelligence is
constructing.

THE HUMAN IMPERATIVE

Throughout this white paper, we have focused on
the technical hurdles of data and modeling, but our
motivation remains deeply human. The urgency
to move beyond stochastic experimentation is
driven by patient need. Patients waiting for organ
transplants, individuals with genetic disorders,
and the unfulfilled promise of personalized
medicine cannot afford another decade of manual
optimization. Cellular Intelligence’s platform is a
technological response to this biological urgency.
We leverage big data and computation not for
their own sake, but to create a reliable engine for
therapeutic innovation.

A DISTINCT PATH FORWARD

Groundbreaking initiatives by CZI, Genentech,
Xaira, Tahoe, and the Arc Institute have laid the

Cellular Intelligence replaces decades of empirical guesswork with a predictive engine
for therapeutic innovation.

foundation by mapping the geography of the cell.
Cellular Intelligence distinguishes itself by drilling
into the dynamic, context-rich, and sequential
aspects of biology that these atlases do not
address. We are not just mapping where cells are;
we are building the navigation system to guide
them to where they need to be.

We often draw an analogy to the revolution
in protein structure: What AlphaFold achieved
for protein folding—turning a physical mystery
into a solvable computational problem—Cellular
Intelligence aims to achieve for cellular signaling.
However, we intend to go a step further. While
prediction is powerful, our ultimate goal is design:
the active intervention in cellular logic to achieve
specific therapeutic outcomes.

JOIN THE REVOLUTION

“Towards a Foundation Model for Virtual Cell
Signaling” is more than a white paper; it is a
roadmap for a new paradigm in medicine.

* For Strategic Investors: This represents a
shift from asset-heavy risk to platform-based
scalability, offering a generator for novel
therapies and high-value intellectual property.

* For Biopharma Partners: It offers a chance
to supercharge R&D, replacing empirical
guesswork with data-driven precision to de-risk
drug discovery and cell therapy manufacturing.

* For Scientists: It promises a new generation
of tools that expand the experimental horizon,
allowing us to probe the “why” and “how” of
cellular behavior with unprecedented clarity.

We are forging a path where data, computation,
and biology converge to enable mastery over cell
signaling. The data is flowing, the infrastructure is
built, and the vision is clear. Cellular Intelligence
invites you to be part of this revolution—a future
where we do not just observe biology’s complexity,
but intelligently shape it for the betterment of
humanity.
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