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The Challenge
Modern biology struggles to predict and control cellular behavior because cell 
signaling is complex and context-dependent. Current methods rely on slow, empirical 
trial and error.
 
The Cellular Intelligence Solution
Cellular Intelligence is building the first Universal Virtual Cell-Signaling Model: a 
foundation model capable of predicting how any cell in any state changes in response 
to external signals.

The Competitive Advantage

●	 Unrivaled Data Scale: Utilizing a proprietary capsule-based platform, Cellular 
Intelligence generates massive, context-rich datasets—scaling to millions of 
unique perturbation conditions—to solve the problem of context dependence.

●	 Static vs. Dynamic States: While others profile cells in fixed states, we use 
human stem cells to decode the combinatorial signaling logic that determines 
cellular behavior and ultimately cell fate, turning the biological mystery of how 
cell types are made into a tractable engineering challenge.

Core Architecture
Our framework is built on a synergistic feedback loop between massive-scale data 
generation and predictive modeling. This proprietary capsule data engine covers 
the astronomical search space of cell signaling, distilling it into the context-rich, 
high-fidelity datasets required to train transformer models to learn the fundamental 
“grammar” of cellular signaling. As our data scales, these architectures will evolve 
from discrete response predictions to high-resolution continuous-time models of 
biological behavior, culminating in a universal simulation engine that enables the 
engineering of cell fate.

Translational Impact 
By transforming biology into a predictive engineering discipline, Cellular Intelligence 
enables in silico control of cellular behavior, with applications ranging from rational 
protocol design for regenerative medicine to context-specific drug effect prediction 
and systematic disease modeling. This fundamentally transforms the ability to 
discover new treatments and save patient lives.
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A fundamental challenge in modern biology is 
that of precise, engineered cellular control. Cells 
possess their own language for communicating 
with each other—cell signaling—which directs 
core biological processes like development and is 
frequently dysregulated in disease.  

Remarkably, biology achieves this complexity 
using a surprisingly concise vocabulary: only around 
20 fundamental molecular signaling pathways 
have been identified to date.  It is the combinations 
and orders in which they are used that underlies 
how such a small number of pathways can give 
rise to the staggering diversity of human cell types 
and states. In principle, because these pathways 
are readily manipulated by small molecules, they 
provide a potent mechanism through which we 
could control cellular decision-making.

However, despite decades of effort, we have not 
yet deciphered the grammar of this language. Today, 
the effects of a given signal are largely determined 
through an empirical, trial-and-error process. This is 
due to two compounding challenges: 

1.	 Combinatorial Complexity: The sheer number 
of signal combinations limits systematic 
experimental dissection. 

2.	 Context Dependence: The effect of a signal 
depends heavily on the state of the cell prior to 
receiving it. 

The Human Cost of Technical Limitations. The 
failure to decode the logic of cell signaling is not 
just a scientific bottleneck, but a systemic barrier 
to progress and, consequently, a delay in saving 
lives. The inability to predict cellular behavior stalls 
progress in regenerative medicine, where scientists 
painstakingly test countless combinations to guide 

stem cells into desired tissues, and in pharmacology, 
where therapies fail because we cannot foresee 
how diseased cells will react.

Patients waiting for organ transplants, 
individuals with genetic disorders, and the 
unfulfilled promise of personalized medicine cannot 
afford another decade of manual optimization. 
Our urgency to move beyond trial-and-error 
experimentation is driven by patient need.

C E L L U L A R  I N T E L L I G E N C E ’ S 
V I S I O N

 
This white paper outlines Cellular Intelligence’s 
solution to the challenge of predicting and 
controlling cellular behavior: the construction of 
the first Universal Virtual Cell-Signaling Model, 
a platform intended to compute how any cell state 
will change in response to external signals. 

By combining the paradigm of developmental 
biology—nature’s own proving ground—with our 
proprietary capsule platform, we transform cell 
signaling from an empirical art into an engineering 
discipline built for therapeutic design. We aim to 
unlock high-impact applications: from guided cell 
therapies that replace lost tissues, to context-
specific drug response prediction, to new ways of 
modeling disease as signaling network failures.

1.	 A New Era of Cellular Control: 
From Empirical Biology to 
Predictive Control

Cells possess their own language for 
communicating with each other

A major bottleneck in modern medicine is the inability to predict how different cells 
respond to signals. We are replacing slow, manual experimentation with a predictive 
model that handles this complexity, accelerating the path to life-saving therapies.
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In essence, a virtual cell-signaling model is a 
predictive map from an initial cell state and an 
external signal to the cell’s future state. Formally, it 
can be seen as a function: 

f(initial cell state, signal) →  
future cell state 

Crucially, the “cell state” encompasses the 
cell’s molecular profile (e.g., its transcriptome and 
epigenetic status) and functional identity—i.e., the 
“context” in which the signal is being applied [Wagner 
et al., 2016]. Here, “signal” refers to a perturbation, 
like a small molecule or growth factor, that affects 
a particular signaling pathway or pathways, at a 
specific dose. The model’s output is a predicted new 
cell state (including gene expression changes) after 

the cell has been exposed to the signal. 

In short, the model answers the question: 
“Given this type of cell (stem cell, cancer cell, 
neuron) and this signal at this dose, what will the 
cell look like and do next?”  

This virtual cell-signaling model thus becomes 
a computational twin of living cells, allowing us to 
simulate how cells in new contexts would respond 
to signals. Our hypothesis is that our platform, 
based on the differentiation of all human cell types 
during development, will provide sufficient data for 
our model to generalize, enabling it to predict cell 
responses in as yet unseen contexts. This model 
will effectively solve the cell-signaling problem, 
enabling scientists and engineers to use in silico 
experiments to guide real-world decisions.

2.	 What is a 
Virtual Cell-Signaling 
Model? 

An example of the rich,  multi-step dynamics a virtual cell-signaling model is designed to capture and predict in sil ico .  Time-lapse images of 
human iPS cells differentiating toward a musculo-vertebral precursor fate, with green and purple f luorescent reporters marking distinct stages of 
maturation. (Credit:  K.  Zhu, Pourquié Lab)

200 µm

The virtual cell-signaling model acts as a computational twin, using a cell’s initial state 
to accurately predict how it responds to signals, thereby replacing trial-and-error with 
precise in silico simulation.
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Biology has run into a complexity barrier that is now 
blocking progress. The field requires a fundamental 
shift in approach, from mapping static cell states to 
modeling the dynamic transitions between them.

This is the gap that Cellular Intelligence is built to 
fill. Our approach is not just incrementally better—it 
is fundamentally different in how it tackles scale and 
complexity. Our key insight at Cellular Intelligence is 
that building a universal machine learning model 
for cellular signaling requires the interrogation of 
signaling across a very large number of contexts. 
Virtually all similar efforts towards cell foundation 
models take the approach of applying as many 
perturbations as possible (drug screens, genetic 
screens) to a limited number of cell types, often in 
the single digits. This limitation is inherent to their 
data generation methodology, which is rooted in 
existing screening paradigms. Thus, other datasets, 
while perturbation-rich, are context-poor, meaning 
that they have very limited exposure to different 
cellular contexts. Given that context-dependence 
is the biggest challenge to predicting the effects of 
signaling, such approaches cannot adequately train 
a model that will generalize across contexts. 

Our approach takes full advantage of the 
paradigm of developmental biology, the natural 
process by which stem cells differentiate into all 
the different cell types in the human body. Stem 
cells have an innate ability to adopt a vast number 
of cellular states as guided by cell signaling, hence 
providing the ideal platform for generating the rich, 
pan-context signaling data required to train general 
models of cell signaling. By leveraging the process of 
development, we will be able to learn how signaling 
works across the widest possible range of human cell 

types, enabling us to direct cells towards particular 
fates and away from others. Our platform enables us 
to explore the order, concentration, and combination 
of perturbations in a way that others cannot match. 
Our approach has numerous advantages: 

•	 Exponentially Scalable Data Collection via 
Capsule Technology: We recognized early that 
the biggest blocker to a generalizable signaling 
model was data. Traditional experimental 
platforms are context-starved—they might test 
many perturbations, but only on a handful of cell 
states, most typically derived from easy-to-use but 
less physiological cancer cells. Cellular Intelligence 
overcame this bottleneck with a proprietary 
capsule-based context generation system. In our 
platform, pluripotent stem cell colonies are grown 
in microscale capsules that can be split-and-
pooled through multiple treatment steps, each 
capsule accruing a unique barcode to record its 
treatment history. This allows us to interrogate an 
exponentially expanding set of signaling factors 
combinations and of cell states that in principle 
can populate the developmental tree with only 
linearly increasing effort. For example, in a recent 
experiment we started with 30 combinations of 
signaling factors and applied them in 3 sequential 
steps, theoretically covering 303=27,000 unique 
sequences - and indeed we tested all 27K in a 
single multiplexed run. Recently, we scaled this 
to over 1 million sequential-signal combinations 
across potentially thousands of starting cell 
contexts. No other effort comes close to this scale 
of combinatorial perturbations. This massive, 
context-rich dataset is precisely aligned to the 

3.	 A Unique Approach  
to Building the “Virtual Cell”

Most AI models in biology fail because they are trained on limited data—like trying 
to learn a language by reading just one book. Cellular Intelligence uses stem cells to 
generate massive, proprietary datasets that cover the entire ‘tree of life,’ capturing 
how cells behave in every possible context. We use a ‘split-and-pool’ technique to run 
millions of unique experiments in parallel, creating the massive, high-quality training 
data that is required for a predictive foundation model.
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model’s learning objective, and our perturbative 
approach provides causal information in the non-
cancer context that observational cell atlases 
lack. Cellular Intelligence’s capsule system 
effectively turns data generation into a high-
throughput, parallelized endeavor, creating a 
competitive moat via data complexity that others 
cannot easily match. 

•	 Active Learning Loop and Data Augmentation: 
Building a predictive model is only half the battle—
the other half is using it intelligently to accelerate 
learning. Cellular Intelligence’s platform creates 
a virtuous cycle: we generate perturbation data, 
train our model on it, then use that model to 
identify the most informative next experiments to 
run. Rather than testing perturbations randomly 
or exhaustively, the model identifies gaps in its 
understanding—perhaps a particular signal’s 
effect on a specific cell subtype remains poorly 
predicted—and prioritizes those experiments. 
This refinement is also guided by our deep 
expertise in developmental biology. This targeted 
approach means each experimental round 
maximally refines the model’s capabilities, 
dramatically reducing the data needed to 
achieve broad predictive power. Over time, this 
self-refining cycle yields a model that not only 
predicts cellular responses but also efficiently 
guides its own improvement. 
	 Critically, we augment this experimental 
data with publicly available datasets. Cellular 
Intelligence has developed novel computational 
techniques to extract signaling information from 
existing transcriptomic datasets—including 
cell atlases, differentiation time courses, and 
published perturbation studies. While these 
public datasets weren’t originally designed to 
study signaling in our framework, our methods can 
retroactively infer signal-response relationships 
from them, effectively multiplying our training 
data many times over. No other virtual cell effort 
systematically leverages public data in this way, 
giving Cellular Intelligence a unique advantage in 
data efficiency and model generalization. 

•	 Translational Relevance by Design: From 
day one, Cellular Intelligence aligned its data 
and model to real-world therapeutic contexts. 
The signals we test are clinically relevant small 
molecules and growth factors that are GMP-
compliant and used in known differentiation 
or treatment protocols. The timing and dosing 

regimens we explore mirror those that could 
feasibly be applied in manufacturing or in the 
clinic. This means the model’s insights map one-
to-one with actionable protocols. Competing 
“virtual cell” projects often use broad functional 
genomics data (e.g., gene knockouts or 
overexpression in cancer cell lines) that are 
valuable for discovery but may not directly 
translate to, say, a recipe a cell therapy company 
can implement. In contrast, Cellular Intelligence’s 
foundation model is directly built to predict the 
effects of signaling, for which a plethora of drugs 
have been developed, providing a straightforward 
path to a variety of biomedical applications. Our 
data of sequential small-molecule perturbations 
essentially encodes the same “language” the 
human embryo uses to guide cell fates, giving 
the model a built-in translational grounding. 
By coupling the virtual signaling model to 
tangible protocols, we ensure that advances 
aren’t just academic—they can be immediately 
plugged into efforts like regenerative medicine 
manufacturing, drug testing pipelines, or disease 
modeling experiments. This tight integration of 
wet-lab relevance is a major distinguishing factor 
for Cellular Intelligence in the landscape. 

Taken together, these differentiators—at the 
levels of data generation, modeling methodology, 
AI-driven experimentation, and application 
focus—create a first-of-its-kind platform. Cellular 
Intelligence’s approach isn’t simply to build a 
larger cell atlas or a clever algorithm in isolation; 
it is to simultaneously and synergistically develop 
an unprecedented dataset and a specialized 
foundation model that together form a self-
improving engine for understanding and controlling 
cell signaling. This is our blueprint for a true 
foundation model for cell biology.

Cellular Intelligence’s approach isn’t simply to build a larger cell 
atlas or a clever algorithm in isolation; it is to simultaneously 
and synergistically develop an unprecedented dataset and a 
specialized foundation model that together form a self-improving 
engine for understanding and controlling cell signaling.

A  U N I Q U E  A P P R O A C H  T O  B U I L D I N G  T H E  “ V I R T U A L  C E L L ”  ( C O N T I N U E D )
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The vision of a “virtual cell” has attracted 
significant attention from non-profits, big pharma, 
and academic institutes [Tang, 2025; Rood et al., 
2024]. However, “virtual cell” is a broad term. Most 
current efforts are focused on mapping the static 
geography of cell types or understanding internal 
genetic circuitry, and the “purpose” for which such 

maps are being built is not always clear. Cellular 
Intelligence’s distinct focus is on the dynamic 
control of these cells through external signaling.  

Below, we distinguish Cellular Intelligence’s 
approach from other notable initiatives (as of 
December 2025):

4.	 Competitive Landscape:  
Other Approaches 
and How We Differ

Many players in the field are advancing complementary components of a broader 
“virtual cell” vision. Efforts by the Chan Zuckerberg Initiative, Genentech/Roche, Xaira 
Therapeutics, Tahoe Therapeutics, and the Arc Institute are focusing on mapping 
what a cell is (molecular profiling), where it is (spatial profiling), or how it is wired 
internally (genetic perturbations). Cellular Intelligence focuses on a distinct challenge: 
understanding the cell’s built in control systems (signaling), allowing us to predictably 
guide cells towards therapeutic outcomes using their natural mechanisms. We use 
stem cells to capture how signaling works across every human tissue, not just a few 
artificial cancer cell lines with limited physiological value.

Semi-permeable capsules are a core part of Cellular Intelligence’s technology stack, enabling sequential  signaling studies at a scale 
competitors are unable to match .  Blue staining marks cells undergoing differentiation down the ectoderm l ineage.



  |   9

C H A N  Z U C K E R B E R G  I N I T I AT I V E : 
T H E  U N I V E R S A L  R E F E R E N C E  M A P 

The Chan Zuckerberg Initiative (CZI) has invested heavily in its 
biomedical research organization, Biohub, to build a definitive 
“map” of biology. Through efforts like the CELLxGENE 
database and models like TranscriptFormer [Pearce et al., 
2025], they are creating a universal latent space—essentially 
a coordinate system that allows scientists to compare gene 
expression across species and tissues. 

The Distinction: CZI’s work is foundational but, at least to 
date, largely observational. Their models are excellent 
at answering “What is this cell?” or “Where does this cell 
sit on the map?” However, because they lack large-scale 
perturbation data, they cannot predict “Where will this cell 
go if I treat it with Signal X?” CZI provides the atlas; Cellular 
Intelligence provides the navigation system to drive through 
it. To the extent that CZI is aiming to generate perturbational 
data these are genetic perturbations in a limited number of 
contexts, like other efforts described below.

G E N E N T E C H / R O C H E :  T H E  S E A R C H 
E N G I N E  F O R  B I O L O GY 

Genentech has pioneered the use of AI to query cellular data, 
developing models like SCIMilarity to find identifying patterns 
across cell types and diseases [Heimberg et al., 2025]. Their 
goal is primarily hypothesis generation—identifying analogs 
of a disease state in a different context to uncover new drug 
targets. 

The Distinction: Like CZI, this approach relies heavily 
on searching existing atlases rather than developing a 
roadmap for nimbly navigating that space. While Genentech 
utilizes some perturbation screens, they generally lack the 
massive, time-series signaling data required to learn the 
causal relationships required for protocol design. Their 
tools are designed to help scientists model disease; Cellular 
Intelligence’s platform is designed to engineer cells.  

X A I R A  T H E R A P E U T I C S :  M A P P I N G 
T H E  W I R I N G  V S .  O P E R AT I N G  T H E 
C O N T R O L S 

Xaira is a major player tackling the virtual cell from a gene-centric 
angle. With datasets like X-Atlas/Orion, they are performing 
massive Perturb-seq experiments, systematically knocking out 
genes to see how the cell recovers [Huang et al., 2025]. 

The Distinction: This is a complementary but fundamentally 
different problem. If you view the cell as a complex machine, 
Xaira is mapping the internal wiring (asking: “What breaks if I 
cut this wire?”). Cellular Intelligence is learning to operate the 
control panel (asking: “What happens if I turn this knob?”). 
While genetic perturbation is powerful for identifying drug 
targets, Cellular Intelligence’s focus on extrinsic signaling 
is the direct path to regenerative medicine and cell therapy 
manufacturing, where the goal is to guide cells to specific 
fates without genetically altering them, as well as drug target 
identification. 

TA H O E  T H E R A P E U T I C S  A N D 
T H E  A R C  I N S T I T U T E :  H I G H 
P E R T U R B AT I O N ,  L O W  C O N T E X T

The Arc Institute’s recent release of the STATE model, 
developed using the Tahoe-100M dataset—covering 100 
million cells and roughly 1,100 drugs—is the most comparable 
effort to date in terms of scale [Adduri et al., 2025]. It 
represents a massive achievement in perturbation biology.

The Distinction: The critical limitation of the Tahoe dataset, 
and others like it, is context poverty. Standard screening 
paradigms maximize the number of drugs tested, but they test 
them on a very small number of contexts (usually cancer cell 
lines). However, the central challenge of signaling is that it is 
context-dependent—a signal acting on a liver cell does not do 
the same thing when acting on a neuron. Cellular Intelligence’s 
capsule platform allows us to generate tens of thousands of 
distinct biological contexts (intermediate developmental 
states) via human pluripotent stem cells (iPSCs). While Tahoe 
tests many drugs on a few cell types, Cellular Intelligence tests 
the fundamental signals across the entire developmental 
tree representing all human cell lineages. This diversity of 
context is the mathematical prerequisite for a model that can 
truly generalize. Moreover, Tahoe’s approach, while based on 
chemical perturbations, is restricted to single applications 
of these treatments, barely scratching the surface of the 
exponentially large number of orders and doses. 

C O M P E T I T I V E  L A N D S C A P E :  O T H E R  A P P R O A C H E S  A N D  H O W  W E  D I F F E R  ( C O N T I N U E D )
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A successful foundation model for virtual cell 
signaling will be transformative, turning what 
used to be months-long lab endeavors into 
in  silico design problems solvable in days. Here 
we highlight a few high-impact applications 
enabled by Cellular Intelligence’s platform:  

•	 Rational Design of Cell Differentiation 
Protocols: Perhaps the most immediate 
application is in regenerative medicine and 
cell therapy manufacturing. Today, developing 
a protocol to differentiate stem cells into a 
target cell type (e.g., pancreatic beta cells or 
dopaminergic neurons) often takes years of trial-
and-error tweaking of growth factor cocktails 
and timing. With a virtual signaling model, 
this process becomes systematic. The model 
can screen countless candidate protocols 
in  silico, predicting which sequence of signals 
will yield the highest purity of the desired cell 
type. This enables rational protocol design: 
instead of blind experimentation, researchers 
can approach protocol optimization like 
engineering—iterating on simulations first, then 
only testing the most promising conditions at 
the bench. We estimate we can cut protocol 
development time from years to months while 
achieving cells that more closely resemble their 
in vivo counterparts. 

•	 Context-Specific Drug Response Prediction: 
The virtual signaling model functions as a 
powerful tool for predicting drug effects in 
specific cellular contexts. Many drugs behave 
differently in different cell types or disease 

states—a therapy might cure inflammation 
in one tissue but be toxic in another. Using 
our model, scientists can simulate how, for 
instance, an immune cell from a patient with an 
autoimmune disorder will respond to a cytokine 
inhibitor compared to a healthy donor. Such 
simulations highlight context-specific efficacy 
or toxicity early in the R&D process. Moreover, 
because our model captures sequential effects, 
it can predict outcomes of drug combinations 
or scheduling (e.g., finding synergistic timing). 
This enables virtual clinical trials on patient-
derived cell models to narrow down to the most 
promising interventions before they reach the 
clinic. 

•	 Genetic Disease Modeling and Phenotypic 
Rescue: Our platform offers a direct route to 
therapy for genetic disorders by treating the 
cell’s signaling network as a correctable circuit. 
By generating data from iPSCs derived from 
patients with specific genetic mutations, we 
can train our model to understand exactly how 
a genotype alters signaling logic. Crucially, the 
model can then be used in “reverse engineering” 
mode: identifying specific small-molecule 
signals that compensate for the genetic 
defect. For example, if a mutation dampens 
a critical pathway, the model might identify a 
downstream signal or a parallel pathway that can 
be stimulated to restore the healthy phenotype. 
This approach allows us to discover small-
molecule treatments for genetic conditions—
offering a scalable, accessible alternative to 
complex gene therapies. 

5.	 Applications  
and Impact

Traditionally, discovering a new cell differentiation protocol or drug target relies on 
luck and brute-force labor. Cellular Intelligence replaces luck with logic. By predicting 
how cells respond to signals before experiments begin—whether rationally designing a 
protocol for regenerative medicine or searching for a drug to rescue a genetic defect—
our model replaces blind experimentation with calculated prediction, de-risking the 
most expensive stages of drug and therapy development.
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•	 Interpreting Disease as Signaling Network 
Failure: Many diseases—from cancer to 
diabetes—can be traced to malfunctions in 
cellular signaling pathways. Our model provides 
a new lens on these pathologies: it can simulate 
how cells in a disease state respond abnormally 
to signals and help pinpoint what in the signaling 
network is broken. By comparing model 
predictions between healthy and diseased cell 
states, researchers can ask, “Which signal does 
the diseased cell fail to handle correctly?” If 
the model shows that a certain developmental 
signal no longer triggers the expected gene 
expression change, that suggests a specific 
pathway defect. In this way, the model acts as a 
digital twin for diseased cells, revealing failure 
points in their internal circuitry and guiding the 
search for therapeutic targets that restore 
proper signaling. 

•	 Uncovering Hidden Biology and New 
Pathways: By systematically exploring such 
a vast space of conditions, our platform is 
naturally poised to make biological discoveries. 
In traditional experiments, scientists often test 
hypothesis-driven combinations of signals—
but nature’s combinatorial complexity means 
many interactions remain unknown. Cellular 
Intelligence’s multiplexed approach casts a wide 
net, allowing us to flag serendipitous findings 
of “cryptic” pathways or novel cell states. For 
example, in our 27,000-condition screen, we 
unexpectedly generated notochord-like cells 
(a rare embryonic type) from pluripotent stem 
cells (only recently discovered in 2024 [Rito 

et al., 2024]). The model, having seen this, 
can generalize and teach us the “recipe” for 
rare biology. Moreover, because our model 
incorporates literature-based priors, it serves 
as a hypothesis generator: if it predicts a strong 
outcome that isn’t documented in literature, that 
is a cue to investigate “white spots on the map” 
of cell signaling. 

By enabling these applications, a foundation model 
for cell signaling stands to accelerate progress 
across biomedicine. It provides a unifying platform 
where biologists, bioengineers, and clinicians can 
ask “what if” questions - What if I add this factor 
at hour 24? What if I inhibit this pathway in a cell 
with this mutation? - and get immediate, educated 
answers to guide their next steps. The end result 
will be faster development of therapies (both 
cell-based and traditional drugs), more precise 
interventions with fewer failures, and a deeper 
understanding of life’s fundamental processes. 

A successful foundation model for virtual cell signaling will 
be transformative, turning what used to be months-long lab 

endeavors into in silico design problems solvable in days.

A P P L I C A T I O N S  A N D  I M P A C T  ( C O N T I N U E D )
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Cellular Intelligence’s approach is bold, but it is 
grounded in concrete progress from our ongoing 
research. We have already achieved significant 
milestones that validate both the feasibility of our 
platform and its early predictive capabilities: 

•	 Unprecedented Data Scale and Diversity: 
We have successfully built the world’s first 
dataset of sequential cell-signaling responses 
at massive scale. In 2024, our team completed 
a pilot split-and-pool screen of 27,000 distinct 
conditions (3 sequential signal combinations 
applied to human iPSC-derived cells). Each 
condition is a unique sequence, like “Signal 
A (3 days) → Signal B (3 days) → Signal C (3 
days)”, and we profiled the cells after the first 
signal and the final signal via single-cell RNA 
sequencing. This experiment alone produced an 
extraordinary variety of outcomes. Remarkably, 
after just 3 days (one step), cells in capsules 
had already diverged into all major embryonic 
lineages (ectoderm, mesoderm, endoderm). 
By day 9 (at which point each capsule has seen 
a combination of three successive signals), 
we observed a rich mosaic of cell types from 
those lineages—including neural precursors, 
muscle progenitors, gut epithelial cells, blood 
vessel cells, and more. This comprehensive 
coverage is a strong validation that our capsule 
perturbation engine can generate the full 
spectrum of cell fates in a controlled way; these 
include the same notochordal cells we first 

detected in our 27K experiment. These results 
confirm that our method doesn’t just produce 
“some cells”—it produces almost any cell, 
given the right signals, and our data captures 
those mappings.

•	 Scaling to 1 Million Conditions: Building on 
the 27K-condition success, we immediately 
set our sights on scaling up. In mid 2025, we 
executed experiments that exposed cells to on 
the order of 106 sequences of perturbations. 
Initial analysis of the 1M-condition run (which 
subsampled cells and capsules at multiple 
time points) confirms the trend from the 27K 
screen: cells exposed to this vast range of 
signal combinations still populate all expected 
major cell lineages—demonstrating scalability 
without loss of biological breadth. We also see 
finer granularity in some cases: for instance, 
where we had “muscle precursors” before, 
we now see separate clusters for skeletal 
vs. cardiac muscle lineage, etc. This gives us 
confidence that increasing data density yields 
increasing resolution, which will in turn power 
the training of increasingly predictive models. 
It’s important to note that simply generating 
data is not our goal—the goal is predictive 
power. Our model’s performance (predictive 
accuracy) is improving as the dataset grows, 
a hallmark of a true foundation model where 
more data directly translates into better 
generalization. 

6.	 Progress and Validation 
to Date

Cellular Intelligence has successfully executed some of the largest combinatorial 
signaling screens in history, scaling to over 1 million unique experimental conditions. 
We have proven that our platform can already generate a vast diversity of cell types—
from muscle progenitors to neurons to blood vessel cells—in a single run. We have now 
reached a critical inflection point: our data engine is operating at the scale required 
to unlock “scaling laws” in biology, where massive datasets yield qualitatively more 
powerful and generalizable models.
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•	 Technical Validation of Platform Components: 
Alongside biological results, we have achieved 
numerous technical milestones that de-risk the 
platform. We have confirmed that our capsule 
barcoding method is reliable and scalable. We 
have shown that cells can remain healthy in 
capsules through multiple split-and-pool steps, 
maintaining viability and proliferative capacity. 
Our single-cell sequencing pipelines have been 
optimized to handle extremely large libraries, 
and we developed cloud-based tools to process 
millions of single-cell profiles per run. We have 
also begun public data augmentation: by pre-
training on an embryo atlas (public single-cell 
RNA-seq from mammalian development) and 
fine-tuning on our perturbation data, we expect 
to improve model performance [Xu et al., 
2023]. All these pieces—data generation, data 
accuracy, model training, and early application—
provide a solid foundation as we move from 
prototype to full-scale platform. 

In summary, within roughly two years, Cellular 
Intelligence has gone from concept to demonstrating 
in vitro and in silico proof-of-concept results. We’ve 
generated orders-of-magnitude more relevant data 
than previously available, and we’ve shown that 
this data can power AI models to make non-trivial 
predictions in cell biology. Most importantly, we have 
validated that biology doesn’t “break” at scale: cells 
in our complex experiments still yield biologically 
meaningful states (not just random or dead cells). 
This de-risks the central hypothesis that a general 
signaling model can be learned from these data. The 
progress to date sets the stage for the next phase: 
scaling up further and delivering on increasingly 
ambitious milestones of predictive power and real-
world impact. 

P R O G R E S S  A N D  V A L I D A T I O N  T O  D A T E  ( C O N T I N U E D )

Human stem cells enable broad cell-fate coverage. Their capacity to differentiate into diverse l ineages supports comprehensive mapping of 
cell  fates.
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Building a foundation model for cell signaling 
requires more than just data; it requires a 
computational framework capable of learning the 
complex, non-linear rules of biology. At Cellular 
Intelligence, we approach this as a machine learning 
problem defined by high-dimensional states and 
causal signaling inputs. Below, we outline our 
modeling philosophy, our strategy for architectural 
exploration, and the data infrastructure we have 
built to power this engine. 

T H E  C O R E  L E A R N I N G 
P R O B L E M 
Fundamentally, our model is trained to approximate 
a transition function for cellular state. In machine 
learning terms, our primary training examples take 
the following form: 

input transcriptome + input signal → 
output transcriptome 

The challenge in learning this function is context 
dependence: the same signal (e.g., Wnt activation) 
will produce a drastically different output 
depending on the input transcriptome. 

Because our capsule platform generates massive 
variation across both the input transcriptome 
(thousands of intermediate developmental states) 
and the input signal (dosages and combinations), 
we provide the model with the necessary volume 
of examples to learn this context-specific logic. 
Unlike standard regression models, our goal is to 
learn a generalized representation of how signals 
perturb cell state manifolds. 

A R C H I T E C T U R A L 
E X P L O R AT I O N 
We are currently exploring and benchmarking 
several state-of-the-art neural network 
architectures suited for this high-dimensional, 
causal modeling: 

•	 Foundation Embeddings: A prerequisite for 
our model is a robust “map” of cell space. 
We are developing embedding models that 
co-embed our proprietary perturbation data 
alongside massive public reference atlases. 
This allows us to represent any given cell not 
as a list of 20,000 genes, but as a coordinate 
in a biologically meaningful latent space. By 
grounding our model in this universal reference 
frame, we ensure that our predictions obey 
biological constraints. 

7.	 Architecture 
and Training Approach

We are adapting the same “Transformer” architecture that powers ChatGPT, but 
instead of predicting the next word in a sentence, our model predicts the next state 
of a human cell. By training on our massive proprietary perturbation dataset alongside 
public cell atlases, we teach the model to generalize across contexts. This allows us 
to learn the fundamental “grammar” of cellular decision-making, transforming biology 
into a computable problem.
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•	 Transformer-Based Context Modeling: 
Transformers have revolutionized language 
processing by handling the context of words in a 
sentence. We are applying similar architectures 
to biology, where the “context” is the current 
state of the cell’s gene regulatory network. We 
are exploring transformer backbones that can 
attend to the specific combination of genes 
active in a cell to determine how to weight the 
incoming signal, effectively “reading” the cell’s 
state to predict its reaction. 

•	 Temporal Dynamics and Neural ODEs: 
Biology happens in continuous time, not just 
in discrete steps. To capture the dynamics of 
differentiation, we are investigating Neural 
Ordinary Differential Equations (Neural 
ODEs). These architectures allow us to model 
the trajectory of a cell as a continuous flow, 
enabling us to predict cell states at time points 
we haven’t explicitly sampled and to model the 
kinetics of how fast a cell transitions from one 
state to another. 

D ATA  A U G M E N TAT I O N  V I A 
P U B L I C  K N O W L E D G E 
While our proprietary data is the gold standard 
for causal ground truth, we amplify its power 
by integrating publicly available data. Cellular 
Intelligence’s computational team has developed 
novel methods to “retroactively” extract signaling 
information from existing datasets. 

By analyzing time-course data from published 
embryology and differentiation papers, we can 
infer pairs of (State A) → (State B) transitions. Even 
if the original authors did not explicitly structure 
their data for machine learning, our pipelines can 
ingest these trajectories to generate millions of 
additional synthetic training examples. This allows 
our model to learn from the collective history 
of biological research, using our high-fidelity 
proprietary data to fine-tune and validate the 
broad patterns learned from the public domain. 

T E C H N I C A L 
I N F R A S T R U C T U R E 
To support this massive undertaking, we have 
established a cloud-native data infrastructure 
designed for scale. 

•	 Ingestion Pipelines: We have built automated 
pipelines capable of ingesting and normalizing 
heterogeneous data sources—ranging from 
internal high-throughput sequencing runs to 
unstructured public datasets. 

•	 Scalable Compute: Our analysis platform runs 
on distributed GPU-based cloud computing 
clusters, allowing us to train large-scale models 
on high-dimensional single-cell data without 
memory bottlenecks.

•	 Iterative Loop: Our infrastructure is designed 
for a tight loop between wet lab and dry lab. 
Data from the capsule platform is automatically 
processed, quality controlled, and fed into 
our modeling environment, allowing our 
computational biologists to rapidly iterate 
on model architectures as new datasets are 
generated. 

By combining a rigorous mathematical 
formulation of the signaling problem with flexible, 
scalable architecture exploration, Cellular 
Intelligence is laying the groundwork for the first 
true simulation engine for cellular engineering. 

A R C H I T E C T U R E  A N D  T R A I N I N G  A P P R O A C H  ( C O N T I N U E D )
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ALPHA PHASE: ESTABLISHING 
THE PREDICTIVE BASELINE 
C U R R E N T  F O C U S 
In the Alpha phase, our primary objective is to 
demonstrate the fundamental ability to predict 
the transcriptomic state change induced by a 
single signal. While simple in principle, achieving 
high accuracy on this task across varying cellular 
contexts would represent a significant leap forward 
for the field. 

K E Y  G O A L S
•	 Single-Signal Prediction: We aim to achieve 

80% accuracy in predicting the transcriptomic 
shift of cells treated with any of 10 core signaling 
pathways (e.g., Wnt, BMP, FGF, Nodal). 

•	 Contextual Generalization: Crucially, this 
accuracy must hold across a diverse set of 
starting iPSC-derived contexts, not just a few 
cell lines. 

•	 Fixed-Interval Training: Initial training will focus 
on fixed time intervals (e.g., predicting the state 
at t=24 hours given state at t=0). 

S TAT U S
We are currently generating the high-volume 
perturbation data required to train this initial model. 
We view the successful completion of Alpha as the 
core “proof of principle” that context-dependent 
signaling is a learnable function. 

BETA PHASE: HIGH-FIDELIT Y & 
C O M B I N ATO R I A L  E X PA N S I O N 
TA R G E T:  S U R PA S S I N G  S TAT E -
O F -T H E - A R T 
In the Beta phase, we aim to refine the model’s 
precision and expand its scope to handle the 
complexity of real-world biological environments. 
At this stage, we expect the model to outperform 
existing observational atlases in predicting cell fate. 

K E Y  G O A L S 
•	 90% Accuracy Threshold: We aim to increase 

our prediction accuracy to 90% across an 
expanded library of signaling pathways and 
cellular contexts. 

•	 Public Data Augmentation: We will integrate 
massive amounts of publicly available 
transcriptomic data (e.g., cell atlases, perturbation 
screens) to improve the model’s generalization 
capabilities, particularly for cell states that are 
under-represented in our internal dataset.

•	 Simultaneous Signal Integration: Moving 
beyond single signals, Beta will address 
combinatorial signaling—predicting the 
behavior of cells when multiple signals are 
applied simultaneously (e.g., Wnt + FGF together), 
which often yields non-linear synergistic effects. 

•	 Spatial Context: We will begin incorporating 
spatial transcriptomics data. This allows the 
model to account for cell-cell communication 
and local environmental factors (paracrine 
signaling) that influence cell fate decisions. 

8.	 Roadmap 
and Milestones

Cellular Intelligence is executing on a clear roadmap to develop and deploy our 
foundation model for cell signaling. We are moving systematically: first predicting single 
signals, then mastering combinatorial complexity, and finally achieving a universal 
model capable of simulating cellular behavior over continuous biological time. This 
trajectory moves the field from “discovery by chance” to “discovery by design,” creating 
the infrastructure needed to rapidly deliver clinical solutions.
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V 1  P H A S E :  T H E  U N I V E R S A L 
S I M U L AT I O N  E N G I N E 

TA R G E T:  C O N T I N U O U S  T I M E  & 
C H E M I C A L  U N I V E R S A L I T Y 

The V1 release represents the full realization of 
the virtual cell platform: a dynamic, continuous 
simulation engine capable of bridging the gap 
between protein signals and small molecule drugs. 

K E Y  G O A L S 

•	 Continuous Time Modeling (Neural ODEs): 
We will transition from fixed-step predictions 
to continuous-time modeling using Neural 
Ordinary Differential Equations (Neural 
ODEs). This will allow us to query the cell state at 
any time point (e.g., t=12.5 hours), enabling the 
precise optimization of dosing schedules and 
pulse durations. 

•	 Chemical Co-Embedding: We will develop 
a chemical co-embedding space, mapping 
small molecules to the signaling pathways they 
modulate. This allows the model to predict how 
a specific chemical inhibitor or agonist affects 
a pathway, effectively translating “protein 
logic” into “drug logic.” This is a critical feature 
for pharmaceutical applications, enabling the 
in  silico replacement of expensive growth 
factors with easily synthesized small molecules. 

•	 Global Generalization: By V1, the model will 
leverage a fully integrated dataset of internal 
and external data, aiming for high predictive 
accuracy across all major germ layers and 
standard therapeutic targets. 

Beyond V1, our roadmap extends to a Vision 2.0 
where the model becomes even more powerful—
potentially incorporating patient-specific genetic 
backgrounds (to handle donor variability in cell 
responses), modeling cell-cell interactions (like 
adding immune cells into the mix for immunotherapy 
design), and integrating other modalities (such as 
signaling protein levels, epigenetic states, etc. for 
even richer context). The long-term vision is that 
Cellular Intelligence’s foundation model evolves 
into the “operating system” for cellular engineering, 
supporting applications we haven’t yet imagined. 
The milestones listed for Alpha, Beta, V1 are how 
we get there step by step, de-risking along the way 
and delivering value at each stage.

R O A D M A P  A N D  M I L E S T O N E S  ( C O N T I N U E D )

The long-term vision is that Cellular Intelligence’s  
foundation model evolves into the “operating system”  

for cellular engineering, supporting applications  
we haven’t yet imagined.
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The transition of biology from an empirical science to 
an engineering discipline is the defining opportunity 
of our time. At Cellular Intelligence, we are building 
the infrastructure to drive this transformation in the 
domain of cell signaling. By combining the latest 
advances in AI with an unprecedented experimental 
engine, we are systematically decoding the 
“language” of cell fate: the grammar of signals and 
contexts that determine whether a cell becomes a 
neuron or a muscle, whether it regenerates tissue or 
succumbs to disease. 

The implications of mastering this language are 
profound. We envision a future where the question 
“How do I manufacture this tissue?” or “How do I 
rescue this diseased cell?” is not answered by years 
of trial-and-error at the bench, but by a query to a 
foundation model that returns a precise, actionable 
protocol. This is the future Cellular Intelligence is 
constructing.

T H E  H U M A N  I M P E R AT I V E 
Throughout this white paper, we have focused on 
the technical hurdles of data and modeling, but our 
motivation remains deeply human. The urgency 
to move beyond stochastic experimentation is 
driven by patient need. Patients waiting for organ 
transplants, individuals with genetic disorders, 
and the unfulfilled promise of personalized 
medicine cannot afford another decade of manual 
optimization. Cellular Intelligence’s platform is a 
technological response to this biological urgency. 
We leverage big data and computation not for 
their own sake, but to create a reliable engine for 
therapeutic innovation. 

A  D I S T I N C T  PAT H  F O R WA R D 
Groundbreaking initiatives by CZI, Genentech, 
Xaira, Tahoe, and the Arc Institute have laid the 

foundation by mapping the geography of the cell. 
Cellular Intelligence distinguishes itself by drilling 
into the dynamic, context-rich, and sequential 
aspects of biology that these atlases do not 
address. We are not just mapping where cells are; 
we are building the navigation system to guide 
them to where they need to be. 

We often draw an analogy to the revolution 
in protein structure: What AlphaFold achieved 
for protein folding—turning a physical mystery 
into a solvable computational problem—Cellular 
Intelligence aims to achieve for cellular signaling. 
However, we intend to go a step further. While 
prediction is powerful, our ultimate goal is design: 
the active intervention in cellular logic to achieve 
specific therapeutic outcomes. 

J O I N  T H E  R E V O L U T I O N 
“Towards a Foundation Model for Virtual Cell 
Signaling” is more than a white paper; it is a 
roadmap for a new paradigm in medicine. 
•	 For Strategic Investors: This represents a 

shift from asset-heavy risk to platform-based 
scalability, offering a generator for novel 
therapies and high-value intellectual property. 

•	 For Biopharma Partners: It offers a chance 
to supercharge R&D, replacing empirical 
guesswork with data-driven precision to de-risk 
drug discovery and cell therapy manufacturing. 

•	 For Scientists: It promises a new generation 
of tools that expand the experimental horizon, 
allowing us to probe the “why” and “how” of 
cellular behavior with unprecedented clarity. 

We are forging a path where data, computation, 
and biology converge to enable mastery over cell 
signaling. The data is flowing, the infrastructure is 
built, and the vision is clear. Cellular Intelligence 
invites you to be part of this revolution—a future 
where we do not just observe biology’s complexity, 
but intelligently shape it for the betterment of 
humanity. 

9.	 Conclusion:  
From Observation to Engineering

Cellular Intelligence replaces decades of empirical guesswork with a predictive engine 
for therapeutic innovation.
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