
Amazon Signage Remote Management API

1. Overview

This document provides CMS partners with an introduction to Amazon Signage Remote Management API and is intended to
assist you with

●

●

●

understanding the overall architecture and design philosophy

preparing your technical infrastructure for integration

beginning your planning integration roadmap

2. Executive Summary

2.1 WHAT IS AMAZON SIGNAGE REMOTE MANAGEMENT API?

The Remote Management API enables certified Content Management System (CMS) applications to directly control and
monitor Signage Stick devices through on-device communication. This enables CMS providers to offer enhanced device
management capabilities while maintaining security and user privacy.

2.2 KEY BENEFITS

For CMS providers:

●

●

●

●

Direct device access with minimal latency

Customizable user experience within CMS applications

Simplified authentication, without the need for loud credentials

Real-time device operations and feedback

For End Users:

● Single application for content and device management

Version Release Date Description

V1.0 Jan 20th,2026 Initial release

●

●

●

Faster response times for device operations

Reduced network dependency

Improved reliability

2.3 CORE CAPABILITIES

┌───┐
│ CMS ProviderApplication │
│ │
│ ✓ Device Information ✓ Screen Capture │
│ ✓ Device Reboot ✓ WiFi Status retrieval │
│ ✓ Status Monitoring ✓ HDMI CEC operations │
└───┘
 │
 │ Local AIDL IPC
 ▼

┌───┐
│ Remote Management Agent │
│ (System Application) │
└───┘

2.4 WHO SHOULD READ THIS DOCUMENT?

●

●

●

Product Managers: Sections 2, 3, 6, 8

Technical Architects: Sections 4, 5, 7

Developers: All sections, especially 4, 5, 6, 7

3. Background and Context

3.1 ECOSYSTEM

The Amazon Device Solution (ADS) Signage Stick ecosystem consists of three main components:

3.2 THE SOLUTION

Device-Level Integration using Android IPC (Inter-Process Communication) mechanism:

CMS App → Remote Management → Device Action (<100ms)

This approach provides:

●

●

●

●

10-50x faster response times compared to Cloud-to-Cloud based solution

Offline capability for most operations

Simplified integration with standard Android patterns

Better security through local validation

4. Solution Architecture

4.1 HIGH-LEVEL ARCHITECTURE

┌───┐
│ Signage Stick Device │
├───┤
│ ┌──┐ │
│ │ CMS Application (Provider App) │ │
│ │ ┌──┐ │ │
│ │ │ Device Management Service │ │ │
│ │ │ - Connect to Remote Management │ │ │
│ │ │ - Call management APIs │ │ │
│ │ │ - Handle responses │ │ │
│ │ └──┘ │ │
│ └──┘ │
│ │ │
│ │ AIDL Binder IPC │
│ ▼ │
│ ┌──┐ │
│ │ Remote Management Agent (System Application) │ │
│ │ ┌──┐ │ │
│ │ │ AIDL Service Interface │ │ │
│ │ │ - Receive API calls │ │ │
│ │ │ - Validate caller identity │ │ │
│ │ │ - Execute operations │ │ │
│ │ └──┘ │ │
│ │ ┌──┐ │ │
│ │ │ Security & Authorization Module │ │ │
│ │ │ - Package signature verification │ │ │
│ │ │ - Allowlist checking │ │ │
│ │ │ - Permission validation │ │ │
│ │ └──┘ │ │
│ │ ┌──┐ │ │
│ │ │ Device Management Functions │ │ │
│ │ │ - System control (reboot, etc.) │ │ │
│ │ │ - Information retrieval │ │ │
│ │ │ - Screen capture │ │ │
│ │ │ - HDMI CEC operations │ │ │
│ │ └──┘ │ │
│ └──┘ │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ Android System Services │ │
│ │ - Device Policy Manager │ │
│ │ - Package Manager │ │
│ │ - Power Manager │ │
│ │ - WiFi Manager │ │
│ └──┘ │
└───┘
 │
 │ Cloud Sync (Config & Logging)
 ▼

 ┌──────────────────────────┐
 │ Signage Manager Backend │
 │ - Allowlist │
 │ - Audit logs │
 └──────────────────────────┘

4.2 COMMUNICATION FLOW

4.3 TECHNOLOGY STACK

Android IPC Mechanism:

●

●

●

AIDL (Android Interface Definition Language): Standard Android IPC

Binder: Low-level Android communication infrastructure

Service Binding: Android service connection pattern

Key Characteristics:

●

●

●

●

Cross-process communication

Type-safe method calls

Built-in permission system

Automatic lifecycle management

5 API Capabilities Overview

5.1 AVAILABLE OPERATIONS

The Remote Management API will provide the following capabilities:

5.1.1 Device Information

┌───┐
│ Device Identification │
│ • Device Serial Number (DSN) │
│ • Model name and hardware info │
│ • OS version and build number │
└───┘

┌───┐
│ System Status │
│ • CPU usage │
│ • Memory usage (total, free, used, ratio) │
│ • Storage usage (total, free, used, ratio) │
└───┘

┌───┐
│ Hardware Monitoring │
│ • CPU temperature (Celsius) │
│ • GPU temperature (Celsius) │
│ • Thermal status (NORMAL/WARNING/CRITICAL) │
└───┘

┌───┐
│ Network Status │
│ • WiFi connection state │
│ • Signal strength (dBm and level 0-4) │
│ • Link speed (Mbps) │
│ • Frequency (MHz) │
│ • Connected SSID │
│ • IP address and MAC address │
└───┘

┌───┐
│ HDMI & Display Status │
│ • HDMI connection state │
│ • EDID data (raw hex string) │
│ • Monitor info (parsed from EDID) │
│ • Display manufacturer and model │
│ • Resolution and refresh rate │
└───┘

Note: All data structures align with REST API format. Values are in bytes (not MB), field names match REST API conventions.
See Appendix B for complete data models.

5.1.2 Device Control

┌───┐
│ System Operations │
│ • Reboot device (with optional delay 0-300 seconds) │
│ • Factory reset device (with external storage option) │
└───┘

┌───┐
│ HDMI CEC Operations │
│ • Get HDMI connection and CEC status │
│ • Refresh CEC status (query power and audio) │
│ • Toggle display power (on/off) │
│ • Get display information from EDID │
└───┘

┌───┐
│ Screen Capture │
│ • Capture current screen │
│ • Configurable format (PNG, JPEG) │
│ • Quality control (1-100, JPEG only) │
│ • Returns image data with metadata │
└───┘

┌───┐
│ Maintenance Operations │
│ • Clear application caches (specific apps) │
└───┘

Important HDMI CEC Notes:

●

●

●

CEC commands are asynchronous - responses arrive after 100-500ms

Always call refreshHdmiStatus() before reading power/audio state

Not all displays support all CEC commands - check canControl flag

See Appendix B for complete CEC API details and implementation examples

5.2 SAMPLE API CALLS (CONCEPTUAL)

Note: These are simplified conceptual examples. For complete implementation including error handling, async execution, and
full code examples, please refer to Appendix B: AIDL Interface Definitions.
Getting Device Information:

// Connect to Remote Management service

EmaDeviceManager deviceManager = new EmaDeviceManager(context);

deviceManager.connect();

// Get device info

DeviceInfo info = deviceManager.getDeviceInfo();

if (info.code == 200) {

 String dsn = info.data.dsn;

 String version = info.data.versionName;

 long uptimeMs = info.data.elapsedMs;

}

// Get system resources

SystemResources resources = deviceManager.getSystemResources();

if (resources.code == 200) {

 long memoryFreeMB = resources.data.memory.free / (1024 * 1024);

 float memoryUsagePercent = resources.data.memory.ratio;

 float cpuTemp = resources.data.temperature.cpuCelsius;

}

Controlling HDMI Display:

// Get current HDMI status

HdmiStatus status = deviceManager.getHdmiStatus();

if (status.code == 200 && status.data.connected) {

 boolean displayOn = status.data.power.displayOn;

}

// Refresh CEC status (async operation)

deviceManager.refreshHdmiStatus();

Thread.sleep(500); // Wait for CEC response

HdmiStatus updatedStatus = deviceManager.getHdmiStatus();

// Toggle display power

ApiResponse response = deviceManager.toggleDisplayPower();

if (response.code == 200) {

 // Command sent successfully

}

Capturing Screen:

ScreenshotResult result = deviceManager.captureScreen("PNG", 100);

if (result.code == 200) {

 byte[] imageData = result.data.imageData;

 int width = result.data.widthPx;

 int height = result.data.heightPx;

 // Convert to Bitmap

 Bitmap bitmap = BitmapFactory.decodeByteArray(

 imageData, 0, imageData.length

);

}

Rebooting Device:

// Immediate reboot

ApiResponse response = deviceManager.rebootDevice(0);

// Delayed reboot (30 seconds)

ApiResponse response = deviceManager.rebootDevice(30);

if (response.code == 200) {

 // Reboot scheduled successfully

 Map<String, Object> data = response.data;

 String executeAt = (String) data.get("executeAt");

}

For complete usage examples including:

●

●

●

●

●

Full async implementation with AsyncTask/Coroutines

Comprehensive error handling

Service lifecycle management

UI integration examples

Best practices and patterns

See Appendix B.4 - Service Connection Implementation

5.3 DATA FORMATS (PRELIMINARY)

All API responses follow a consistent RESTful structure aligned with the existing REST API:
Standard Response Structure:

{

 "code": 200,

 "message": "OK",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": { }

}

Key Format Specifications:

Sample Response Examples:
For complete JSON response examples for all APIs, including:

●

●

●

Device information responses

System resources responses

HDMI status responses (connected and not connected)

Field Format Example Notes

code Integer 200, 401, 500 HTTP-style status codes

message String "OK", "Unauthorized" Human-readable status

timestamp ISO 8601 "2025-10-11T23:01:00.000Z" With timezone info

Memory/Storage Bytes 1743544320 Not MB - matches REST API

Temperature Float 45.5 Celsius

Uptime Long 4887494 Milliseconds

Signal Strength Integer -45 dBm

Volume Integer 0-100 Percentage

1

2

3

4

5

6

7

8

●

●

Control operation responses

Error responses

See Appendix B.3 - JSON Response Examples

5.4 ERROR HANDLING

All API errors follow RESTful conventions with consistent error structure:

{

 "code": 401,

 "message": "Unauthorized",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "error": "Signature verification failed",

 "packageName": "com.unknown.app",

 "reason": "Package not in allowlist"

 }

}

Common Error Codes:

Error Handling Best Practices:

try {

 ApiResponse response = deviceManager.toggleDisplayPower();

 switch (response.code) {

 case 200:

 // Success

 handleSuccess(response);

 break;

 case 401:

 // Unauthorized - signature issue

 handleUnauthorized(response);

Code Name Description Recommended Action

200 OK Request succeeded Continue processing

400 Bad Request Invalid parameters Check parameter values and types

401 Unauthorized Signature verification failed Verify app signature and allowlist entry

403 Forbidden Permission denied Check device enrollment and permissions

404 Not Found Resource or feature not found Check if feature is supported

429 Too Many Requests Rate limit exceeded Implement backoff and retry logic

500 Internal Server Error Operation failed Log error and retry after delay

501 Not Implemented Feature not implemented Check feature support, graceful fallback

503 Service Unavailable Remote Management service
unavailable Retry after delay, check service status

504 Gateway Timeout Operation timed out Increase timeout or retry

1

2

3

4

5

6

7

8

9

10

 break;

 case 501:

 // Feature not available (e.g., CEC not supported)

 handleFeatureNotAvailable(response);

 break;

 case 503:

 // Service unavailable - retry

 scheduleRetry();

 break;

 default:

 handleUnknownError(response);

 }

} catch (RemoteException e) {

 // IPC communication error

 handleCommunicationError(e);

}

5.5 DETAILED API SPECIFICATIONS

This section provides an overview of the API structure and conventions. For complete AIDL interface definitions, data models,
and implementation examples, please refer to Appendix B: AIDL Interface Definitions.

5.5.1 API Design Principles

All APIs follow RESTful conventions with consistent response structure:
Standard Response Format:

{

 "code": 200, // HTTP-style status code

 "message": "OK", // Human-readable message

 "timestamp": "2025-10-11T23:01:00.000Z", // ISO 8601 with timezone

 "data": {} // API-specific response data

}

Status Code Categories:

●

●

●

2xx (Success): 200 (OK), 201 (Created), 204 (No Content)

4xx (Client Error): 400 (Bad Request), 401 (Unauthorized), 403 (Forbidden), 404 (Not Found), 429 (Too Many
Requests)

5xx (Server Error): 500 (Internal Server Error), 501 (Not Implemented), 503 (Service Unavailable), 504 (Gateway
Timeout)

5.5.2 Data Structure Alignment

The Local Partner API data structures are fully aligned with REST API to ensure consistency:
Memory and Storage:

● Values in bytes (not MB) - matches REST API format

●

●

Field names: total, free, used, ratio - matches REST API naming

Example from REST API:

"memory": {

 "total": 1743544320,

 "free": 560029696,

 "used": 1183514624,

 "ratio": 67.879814

}

Device Information:

●

●

●

Includes all REST API fields: dsn, emaVersion, versionName, versionCode, kioskApp, timezone,
monitorInfo, edid, elapsedMs

EDID and monitor info available in both device info and HDMI status

Uptime tracked as elapsedMs (milliseconds since boot)

Timestamp Format:

●

●

●

ISO 8601 with timezone: "2025-10-11T23:01:00.000Z"

Human-friendly and machine-parseable

Consistent across all API responses

5.5.3 API Categories

The Local Partner API provides five main categories of operations:
1. Device Information APIs

●

●

●

●

getDeviceInfo() - DSN, version, build info, uptime

getSystemResources() - Memory, storage, CPU, temperature

getNetworkStatus() - WiFi connection, signal strength, IP address

getHdmiStatus() - HDMI connection, CEC status, display info

2. Device Control APIs

●

●

rebootDevice() - Reboot with optional delay

factoryResetDevice() - Factory reset (with warning)

3. HDMI CEC Control APIs

●

●

toggleDisplayPower() - Toggle display on/off

refreshHdmiStatus() - Query current CEC status

4. Screen Capture API

● captureScreen() - Capture with format and quality options

5. Maintenance APIs

● clearCache() - System and app cache clearing

5.5.4 HDMI CEC Implementation Notes

The HDMI CEC APIs are based on the Fire OS HDMI utility implementation (see HdmiUtils.java):
CEC Command Mapping:

●

●

toggleDisplayPower() → Sends CEC USER_CONTROL_PRESSED with POWER code

refreshHdmiStatus() → Sends GIVE_DEVICE_POWER_STATUS and GIVE_AUDIO_STATUS queries

Important CEC Considerations:

●

●

●

●

CEC response is asynchronous - status updates arrive ~100-500ms after query

Not all displays support all CEC commands

Always check canControl flag in status responses

Use refreshHdmiStatus() before reading power/audio state for latest values

5.5.5 Rate Limiting

To ensure system stability, the following rate limits apply:

5.5.6 Best Practices

Caching:

●

●

●

Cache device information (DSN, version) - rarely changes

Cache system resources for 10-30 seconds - reduces API calls

Don't cache HDMI status - always refresh before reading

Error Handling:

●

●

●

●

Always check code field in responses

Handle all documented error codes gracefully

Implement retry logic with exponential backoff for 5xx errors

Log errors for debugging but don't spam logs

Async Operations:

●

●

●

●

Use background threads (AsyncTask, Executor, Coroutines) for all API calls

Never call APIs on main/UI thread

Show loading indicators during operations

Provide user feedback on success/failure

HDMI CEC:

API Category Rate Limit Notes

Device Information 10 requests/minute Cache results when possible

Control APIs (reboot, reset) 1 request/5 minutes Safety limitation

HDMI CEC APIs 5 requests/minute Avoid CEC bus congestion

Cache Clear 1 request/10 minutes Resource-intensive operation

Screen Capture 5 requests/minute CPU/memory intensive

Network Config 3 requests/minute Allow time for connection

Exceeding rate limits will result in HTTP 429 (Too Many
Requests) error code.

1

2

3

4

5

6

7

●

●

●

●

Call refreshHdmiStatus() before reading power/audio state

Wait 500ms after refresh before calling getHdmiStatus()

Check canControl flag before attempting control operations

Handle CEC unavailable (code 501) gracefully

Resource Management:

●

●

●

Bind to service when needed, unbind when done

Don't maintain permanent connection unless actively using

Clean up in onDestroy() or similar lifecycle methods

5.5.7 Complete API Reference

For complete details including:

●

●

●

●

●

●

Full AIDL interface definitions

All data model parcelables

JSON response examples

Service connection implementation

Complete usage examples

Project structure and build configuration

Please see Appendix B: AIDL Interface Definitions.

6. Implementation Status

6.1 IMPLEMENTATION CATEGORIES

The current API implementation falls into three categories:

6.2 DETAILED IMPLEMENTATION STATUS

6.2.1 Device Information APIs

getDeviceInfo() - ✅ Fully Implemented

●

●

●

All fields return real device data

DSN, version info, timezone, uptime are accurate

EDID data reflects actual HDMI connection state

getSystemResources() - 🚧 Simulated Data

{

 "memory": {

 "total": 1743544320, // ✅ Real value

 "free": 560029696, // ✅ Real value

Status Description Example APIs Release phase

✅ Fully Implemented Returns real, live data from device getDeviceInfo(), getNetworkStatus() 2026,Jan

🚧 Simulated Data Returns realistic but dummy data for testing getSystemResources() - temp + cpu will return dummy data until 2026, April

1

2

 "used": 1183514624, // ✅ Real value

 "ratio": 67.879814 // ✅ Real value

 },

 "storage": {

 "total": 12520574976, // ✅ Real value

 "free": 12058910720, // ✅ Real value

 "used": 461664256, // ✅ Real value

 "ratio": 3.6872451 // ✅ Real value

 },

 "temperature": {

 "cpuCelsius": 45.5, // 🚧 Simulated (random 40-50°C)

 "gpuCelsius": 48.2, // 🚧 Simulated (random 45-55°C)

 "thermalState": "NORMAL" // 🚧 Always returns "NORMAL"

 },

 "cpu": {

 "usagePercent": 15.6 // 🚧 Simulated (random 10-30%)

 }

}

getNetworkStatus() - ✅ Fully Implemented

●

●

WiFi connection state, signal strength, IP address are real

All network information reflects actual device status

6.2.3 Device Control APIs

rebootDevice() - ✅ Fully Implemented

●

●

Device will actually reboot after specified delay

All functionality works as documented

factoryResetDevice() - ✅ Fully Implemented

●

●

Returns success response but does NOT perform actual factory reset

Implemented as safety measure during testing phase

clearCache() - 🚧 Simulated Data

●

●

Returns realistic freed space values but may not perform actual cache clearing

Operation duration and app count are simulated

6.2.4 HDMI CEC APIs

Overview: HDMI CEC functionality is implemented via Fire OS's AmazonHdmiServiceManager, providing power control
and display information retrieval. However, due to CEC protocol compatibility differences across devices, some features have
limitations on specific TV brands.
Power Control APIs

API Fire TV Samsung TV Notes

setDisplayPower(true) ✅ Fully Working ✅ Fully Working Uses multiple CEC commands for compatibility

setDisplayPower(false) ✅ Fully Working ✅ Fully Working Standard STANDBY command

toggleDisplayPower() ✅ Fully Working ✅ Fully Working Toggles between on/off states

1

2

3

getHdmiStatus() - ✅ Fully Implemented (some fields have limitations)

●

●

●

●

connected: ✅ Real-time HDMI connection detection

display.manufacturer/model/resolution: ✅ Parsed from EDID, accurate and reliable

power.displayOn: ✅ Power status query available

power.canControl: ✅ All CEC devices support power control

CMS Integration Recommendations

1. Power Control: Safe to use, best compatibility across all devices

6.3 TESTING RECOMMENDATIONS

6.3.1 What You Can Test Now

✅ API Integration

●

●

●

●

Service binding and connection

Authentication and authorization

Response format and error handling

Rate limiting behavior

✅ Real Device Data

●

●

●

●

Device identification (DSN, version)

Network connectivity status

HDMI connection detection

Memory and storage information

✅ Core Device Control

●

●

Device reboot functionality

Permission system behavior

7. Integration Approach

7.1 INTEGRATION ARCHITECTURE

7.2 API DISTRIBUTION

ADS will provide:
Remote Management API:

Remote Management API

├── AIDL interface definitions
├── Helper classes for service binding
├── Data models for requests/responses
├── Error handling utilities
└── Sample code and documentation

Integration Steps (refer to B.8 Reference demo project for the fully workable implementation) :

1.

2.

3.

4.

5.

6.

Add dependency to your build.gradle

Declare required permissions in AndroidManifest.xml

Dynamically request DEVICE_MANAGEMENT permission

Initialize Local API in your application

Bind to Remote Management service

Make API calls as needed

CMS need to provide:

Please provide the following information to the ADS team:

Application Information:

├── Package name (e.g., com.yourcompany.cms)
├── Application signing certificate SHA-256 digest (see below)
│ ├── Debug build signature (for testing)
│ └── Release build signature (for production) ReSigned by FireTV Appstore
├── Certificate Authority (if applicable)
├── Target Android API level

Debug vs Release Signatures:
Your app will have different signatures for debug and release builds:

1.

2.

3.

For Testing Phase: Provide debug build signature

For Production Phase: Provide release build signature

Both: If you want to test with production builds

Signature Format:

●

●

●

✅ Lowercase hexadecimal: c8a2e9bccf597c2fb6dc66bee293fc13f2fc47ec77bc6b2b0d52c11f51192ab8

❌ Uppercase with colons: C8:A2:E9:BC:CF:59:7C:2F:...

❌ Base64 encoded: yKLpvM9ZfC+23Ga...

Appendix A: Glossary

Appendix B: AIDL Interface Definitions

This section provides the complete AIDL interface definitions for the Remote Management API.

B.1 MAIN SERVICE INTERFACE

Term Definition

ADS Amazon Device Solution - The team developing enterprise Fire OS products

AIDL Android Interface Definition Language - Android's IPC mechanism

APK Android Package - Application installation file

Certificate Digest SHA-256 hash of the signing certificate

CMS Content Management System - Software for managing digital signage content

DSN Device Serial Number - Unique identifier for each device

Remote Management Endpoint Management Agent Plus - System app for device management

IPC Inter-Process Communication - Mechanism for apps to communicate

SHA-256 Secure Hash Algorithm 256-bit - Cryptographic hash function

Signature Scheme APK signing method (v1, v2, or v3)

Signage Manager Cloud management platform for Signage Stick devices

TTL Time To Live - Cache expiration duration

1

2

3

4

5

6

7

8

9

10

11

12

File: IDeviceManagement.aidl

package com.amazon.ads.ema.api;

import com.amazon.ads.ema.api.model.DeviceInfo;

import com.amazon.ads.ema.api.model.SystemResources;

import com.amazon.ads.ema.api.model.NetworkStatus;

import com.amazon.ads.ema.api.model.HdmiStatus;

import com.amazon.ads.ema.api.model.ScreenshotResult;

import com.amazon.ads.ema.api.model.CacheClearOptions;

import com.amazon.ads.ema.api.model.CacheClearResult;

import com.amazon.ads.ema.api.model.WifiConfig;

import com.amazon.ads.ema.api.model.ApiResponse;

/**

 * Remote Management Local Partner API

 * Main interface for device management operations

 *

 * All responses follow RESTful convention:

 * - code: HTTP-style status code (200 = success, 4xx = client error, 5xx = server err

 * - message: Human-readable status message

 * - timestamp: ISO 8601 format with timezone (e.g., "2025-10-11T23:01:00.000Z")

 * - data: Response data as Map or typed object

 *

 * Status Code Definitions (aligned with HTTP conventions):

 *

 * 2xx: Success

 * - 200: OK - Request succeeded

 * - 201: Created - Resource created successfully

 * - 204: No Content - Request succeeded but no content to return

 *

 * 4xx: Client Errors

 * - 400: Bad Request - Invalid parameters

 * - 401: Unauthorized - Signature verification failed

 * - 403: Forbidden - Permission denied

 * - 404: Not Found - Resource or feature not found

 * - 429: Too Many Requests - Rate limit exceeded

 *

 * 5xx: Server Errors

 * - 500: Internal Server Error - Operation failed

 * - 501: Not Implemented - Feature not implemented

 * - 503: Service Unavailable - Remote Management service unavailable

 * - 504: Gateway Timeout - Operation timed out

 *

 * @version 1.0

 * @since 2026-Q1

 */

interface IDeviceManagement {

 // ==

 // Device Information APIs

 // ==

 /**

 * Get device serial number (DSN) and basic information

 * @return DeviceInfo with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 */

 DeviceInfo getDeviceInfo();

 /**

 * Get system resource information (CPU, memory, storage, temperature)

 * @return SystemResources with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 */

 SystemResources getSystemResources();

 /**

 * Get network status and WiFi information

 * @return NetworkStatus with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 */

 NetworkStatus getNetworkStatus();

 /**

 * Get HDMI connection and CEC status

 * Note: Power and audio states are from last CEC query.

 * Call refreshHdmiStatus() to update with current values.

 *

 * @return HdmiStatus with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 */

 HdmiStatus getHdmiStatus();

 /**

 * Refresh HDMI power and audio status by sending CEC queries

 * This triggers CEC GIVE_DEVICE_POWER_STATUS and GIVE_AUDIO_STATUS commands.

 * Status will be updated asynchronously when device responds.

 * Call getHdmiStatus() after ~500ms to get updated values.

 *

 * @return ApiResponse with code 200 if queries sent successfully

 */

 ApiResponse refreshHdmiStatus();

 // ==

 // Device Control APIs

 // ==

 /**

 * Reboot the device

 * @param delaySeconds Delay before reboot (0 for immediate, max 300)

 * @return ApiResponse with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 * @throws IllegalArgumentException if delaySeconds invalid (code 400)

 */

 ApiResponse rebootDevice(int delaySeconds);

 /**

 * Factory reset the device

 * WARNING: This will erase all user data and cannot be undone

 *

 * @param wipeExternalStorage Whether to wipe external storage

 * @return ApiResponse with code 200 on success

 * @throws SecurityException if caller is not authorized (code 401)

 */

 ApiResponse factoryResetDevice(boolean wipeExternalStorage);

 // ==

 // HDMI CEC Control APIs

 // ==

 /**

 * Toggle display power via HDMI CEC

 * Sends CEC POWER command (toggles between ON and STANDBY)

 *

 * @return ApiResponse with code 200 if command sent

 * code 501 if CEC not available

 * code 503 if HDMI not connected

 */

 ApiResponse toggleDisplayPower();

 /**

 * Set display power state via HDMI CEC

 * Note: Not all displays support explicit ON/OFF commands.

 * Consider using toggleDisplayPower() for better compatibility.

 *

 * @param powerOn true to turn on, false to turn off

 * @return ApiResponse with code 200 if command sent

 * code 501 if CEC not available or command not supported

 */

 ApiResponse setDisplayPower(boolean powerOn);

 // ==

 // Screen Capture API

 // ==

 /**

 * Capture current screen

 * @param format Image format: "PNG" or "JPEG"

 * @param quality Quality (1-100, only for JPEG)

 * @return ScreenshotResult with code 200 and image data on success

 * code 400 if parameters invalid

 */

 ScreenshotResult captureScreen(String format, int quality);

 // ==

 // Maintenance APIs

 // ==

 /**

 * Clear system and app caches

 * @param options Cache clear options

 * @return CacheClearResult with code 200 and freed space info

 */

 CacheClearResult clearCache(in CacheClearOptions options);

 // ==

 // Utility APIs

 // ==

 /**

 * Get API version

 * @return Version string (e.g., "1.0.0")

 */

 String getApiVersion();

 /**

 * Check if specific feature is supported on this device

 * Features: "HDMI_CEC", "SCREENSHOT", "WIFI_CONFIG", "CACHE_CLEAR"

 *

 * @param feature Feature name

 * @return true if supported, false otherwise

 */

 boolean isFeatureSupported(String feature);

}

B.2 DATA MODEL AIDL FILES

File: ApiResponse.aidl

package com.amazon.ads.ema.api.model;

/**

 * Standard API response following RESTful conventions

 * Matches common REST API structure: code, message, data

 */

parcelable ApiResponse {

 int code; // Status code (200 = success, 4xx = client error, 5xx =

 String message; // Human-readable message

 String timestamp; // ISO 8601 format: "2025-10-11T23:01:00.000Z"

 java.util.Map data; // Response data as key-value pairs

}

File: DeviceInfo.aidl

package com.amazon.ads.ema.api.model;

parcelable DeviceInfo {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 DeviceData data; // Device data

}

parcelable DeviceData {

 String dsn; // Device Serial Number

 String kioskApp; // Current kiosk/CMS app package name

 String timezone; // Timezone (e.g., "Asia/Singapore-GMT+08:00")

 String monitorInfo; // Monitor info (e.g., "DELL SP2418H-1920x1080")

 String edid; // Raw EDID hex string (all zeros if no HDMI)

 long elapsedMs; // Device uptime in milliseconds

}

File: SystemResources.aidl

package com.amazon.ads.ema.api.model;

parcelable SystemResources {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 ResourceData data; // Resource data

}

parcelable ResourceData {

 MemoryInfo memory;

 StorageInfo storage;

 TemperatureInfo temperature;

 CpuInfo cpu;

 long elapsedMs; // Device uptime in milliseconds

}

parcelable MemoryInfo {

 long total; // Total memory in bytes

 long free; // Free memory in bytes

 long used; // Used memory in bytes

 float ratio; // Usage ratio (0-100)

}

parcelable StorageInfo {

 long total; // Total internal storage in bytes

 long free; // Free storage in bytes

 long used; // Used storage in bytes

 float ratio; // Usage ratio (0-100)

}

parcelable TemperatureInfo {

 float cpuCelsius; // CPU temperature in Celsius

 float gpuCelsius; // GPU temperature in Celsius

 String thermalState; // "NORMAL", "WARNING", "CRITICAL"

}

parcelable CpuInfo {

 float usagePercent; // Overall CPU usage (0-100)

}

File: NetworkStatus.aidl

package com.amazon.ads.ema.api.model;

parcelable NetworkStatus {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 NetworkData data; // Network data

}

parcelable NetworkData {

 WifiInfo wifi;

 EthernetInfo ethernet;

}

parcelable WifiInfo {

 boolean connected;

 String ssid;

 int signalStrengthDbm; // Signal strength in dBm (e.g., -45)

 int signalLevel; // Signal level 0-4 (4 = excellent)

 int linkSpeedMbps; // Link speed in Mbps

 int freque // Frequency in MHz (2400-2500 or 5000-6000)

 String ipAddress;

 String macAddress;

}

parcelable EthernetInfo {

 boolean connected;

 String ipAddress;

 String macAddress;

}

File: HdmiStatus.aidl

package com.amazon.ads.ema.api.model;

parcelable HdmiStatus {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 HdmiData data; // HDMI data

}

parcelable HdmiData {

 boolean connected; // HDMI cable connected (based on EDID)

 String edid; // Raw EDID hex string (all zeros if not connected)

 String monitorInfo; // Parsed monitor info (e.g., "DELL SP2418H-1920x1080

 boolean cecEnabled; // CEC is enabled

 boolean activeSource; // Device is active source

 DisplayInfo display; // Parsed display info (null if not connected)

 PowerStatus power; // Power status (from CEC query)

 AudioStatus audio; // Audio status (from CEC query)

}

parcelable DisplayInfo {

 String manufacturer; // Display manufacturer (from EDID)

 String model; // Display model (from EDID)

 String resolution; // e.g., "1920x1080"

 int refreshRate; // e.g., 60 (Hz)

}

parcelable PowerStatus {

 boolean displayOn; // Display power state (from CEC query)

 String state; // "ON", "STANDBY", "TRANSITIONING_ON", "TRANSITIONIN

 boolean canControl; // Can control via CEC

 long lastUpdatedMs; // Last query timestamp (epoch millis)

}

parcelable AudioStatus {

 int volume; // Volume level 0-100 (from CEC query)

 boolean muted; // Mute state (from CEC query)

 boolean canControl; // Can control via CEC

 long lastUpdatedMs; // Last query timestamp (epoch millis)

}

File: ScreenshotResult.aidl

package com.amazon.ads.ema.api.model;

parcelable ScreenshotResult {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 ScreenshotData data; // Screenshot data (null if failed)

}

parcelable ScreenshotData {

 byte[] imageData; // Raw image bytes

 String format; // "PNG" or "JPEG"

 int widthPx; // Image width in pixels

 int heightPx; // Image height in pixels

 long fileSizeBytes; // Image size in bytes

}

File: WifiConfig.aidl

package com.amazon.ads.ema.api.model;

parcelable WifiConfig {

 String ssid;

 String password;

 String securityType; // "OPEN", "WEP", "WPA", "WPA2_PSK", "WPA3"

 boolean hidden;

 int priority;

 StaticIpConfig staticIp; // TBD, null for DHCP

}

parcelable StaticIpConfig {

 String ipAddress;

 String gateway;

 String dns1;

 String dns2;

 String subnetMask;

}

File: CacheClearOptions.aidl

package com.amazon.ads.ema.api.model;

parcelable CacheClearOptions {

 boolean systemCache; // Clear system cache

 boolean appCache; // Clear all app caches

 String[] packageNames; // Specific packages (null for all)

}

File: CacheClearResult.aidl

package com.amazon.ads.ema.api.model;

parcelable CacheClearResult {

 int code; // Status code

 String message; // Status message

 String timestamp; // ISO 8601: "2025-10-11T23:01:00.000Z"

 CacheClearData data; // Cache clear data

}

parcelable CacheClearData {

 long systemCacheFreedMB; // System cache freed in MB

 long appCacheFreedMB; // App cache freed in MB

 int appsProcessed; // Number of apps processed

 long totalFreedMB; // Total freed space in MB

 long durationMs; // Operation duration in milliseconds

}

B.3 JSON RESPONSE EXAMPLES

Example: getDeviceInfo() Response

{

 "code": 200,

 "message": "OK",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "dsn": "G072JM0834641AKK",

 "emaVersion": "v1.7.3-118",

 "versionName": "2.3.0",

 "versionCode": 29,

 "kioskApp": "tv.ablesign.app",

 "timezone": "Asia/Singapore-GMT+08:00",

 "monitorInfo": "null-1920x1080",

 "edid": "000

 "elapsedMs": 4887494

 }

}

Example: getSystemResources() Response

{

 "code": 200,

 "message": "OK",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "memory": {

 "total": 1743544320,

 "free": 560029696,

 "used": 1183514624,

 "ratio": 67.879814

 },

 "storage": {

 "total": 12520574976,

 "free": 12058910720,

 "used": 461664256,

 "ratio": 3.6872451

 },

 "temperature": {

 "cpuCelsius": 45.5,

 "gpuCelsius": 48.2,

 "thermalState": "NORMAL"

 },

 "cpu": {

 "usagePercent": 15.6

 },

 "elapsedMs": 4887494

 }

}

Example: getHdmiStatus() Response (No HDMI Connected)

{

 "code": 200,

 "message": "OK",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "connected": false,

 "edid": "0000000000000000....",

 "monitorInfo": "null-1920x1080",

 "cecEnabled": false,

 "activeSource": false,

 "display": null,

 "power": {

 "displayOn": false,

 "state": "UNKNOWN",

 "canControl": false,

 "lastUpdatedMs": 0

 },

 "audio": {

 "volume": 0,

 "muted": false,

 "canControl": false,

 "lastUpdatedMs": 0

 }

 }

}

Example: getHdmiStatus() Response (HDMI Connected)

{

 "code": 200,

 "message": "OK",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "connected": true,

 "edid": "00ffffffffffff0010ac00a1423235301e1b010380351e78ea0565a756529c270f5054a54

 "monitorInfo": "DELL SP2418H-1920x1080",

 "cecEnabled": true,

 "activeSource": true,

 "display": {

 "manufacturer": "DELL",

 "model": "SP2418H",

 "resolution": "1920x1080",

 "refreshRate": 60

 },

 "power": {

 "displayOn": true,

 "state": "ON",

 "canControl": true,

 "lastUpdatedMs": 1728684060000

 },

 "audio": {

 "volume": 15,

 "muted": false,

 "canControl": true,

 "lastUpdatedMs": 1728684060000

 }

 }

}

Example: toggleDisplayPower() Response

{

 "code": 200,

 "message": "CEC command sent successfully",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "action": "toggleDisplayPower",

 "executed": true,

 "command": "POWER_TOGGLE"

 }

}

Example: rebootDevice() Response

{

 "code": 200,

 "message": "Reboot scheduled",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "action": "reboot",

 "scheduled": true,

 "executeAt": "2025-10-11T23:01:30.000Z",

 "delaySeconds": 30

 }

}

Example: Error Response (Unauthorized)

{

 "code": 401,

 "message": "Unauthorized",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "error": "Signature verification failed",

 "packageName": "com.unknown.app",

 "reason": "Package not in allowlist"

 }

}

Example: Error Response (CEC Not Available)

{

 "code": 501,

 "message": "Feature not implemented",

 "timestamp": "2025-10-11T23:01:00.000Z",

 "data": {

 "error": "HDMI CEC control is not available",

 "feature": "HDMI_CEC",

 "reason": "Display does not support CEC or HDMI not connected"

 }

}

B.4 SERVICE CONNECTION IMPLEMENTATION

EMA Device Manager Wrapper (refer to B.8 Reference demo project for the fully workable implementation) :

// Permission request code

private static final int REQUEST_DEVICE_MANAGEMENT_PERMISSION = 1001;

private static final String DEVICE_MANAGEMENT_PERMISSION = "com.amazon.ads.ema.permiss

...

// Check and request permission before connecting to API

checkAndRequestPermission();

...

/**

* Check if DEVICE_MANAGEMENT permission is granted and request if needed

*/

private void checkAndRequestPermission() {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

 if (ContextCompat.checkSelfPermission(this, DEVICE_MANAGEMENT_PERMISSION)

 != PackageManager.PERMISSION_GRANTED) {

 L.i("DEVICE_MANAGEMENT permission not granted, requesting...");

 // Check if we should show an explanation

 if (ActivityCompat.shouldShowRequestPermissionRationale(this, DEVICE_MANAGE

 // Show explanation dialog before requesting permission

 showPermissionExplanationDialog();

 } else {

 // Directly request permission

 requestDeviceManagementPermission();

 }

 } else {

 L.i("DEVICE_MANAGEMENT permission already granted");

 // Permission already granted, connect to API

 connectToPartnerApi();

 }

 } else {

 // For API level < 23, permission is granted at install time

 L.i("API level < 23, no runtime permission needed");

 connectToPartnerApi();

 }

}

...

Note: This manually grant step is only needed during the debug/onboarding phase since the Remote Management Agent will
automatically grant all the runtime permissions for the certified CMS agents.

package com.partner.cms;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.IBinder;

import android.os.RemoteException;

import android.util.Log;

import com.amazon.ads.ema.api.IDeviceManagement;

import com.amazon.ads.ema.api.model.*;

public class EmaDeviceManager {

 private static final String TAG = "EmaDeviceManager";

 private static final String EMA_PACKAGE = "com.amazon.ads.ema.sys";

 private static final String EMA_SERVICE = "com.amazon.ads.ema.sys.DeviceManagement

 private Context context;

 private IDeviceManagement deviceService;

 private boolean bound = false;

 private ConnectionListener connectionListener;

 private final ServiceConnection serviceConnection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName name, IBinder service) {

 deviceService = IDeviceManagement.Stub.asInterface(service);

 bound = true;

 Log.i(TAG, "Connected to Remote Management service");

 if (connectionListener != null) {

 connectionListener.onConnected();

 }

 }

 @Override

 public void onServiceDisconnected(ComponentName name) {

 deviceService = null;

 bound = false;

 Log.w(TAG, "Disconnected from Remote Management service");

 if (connectionListener != null) {

 connectionListener.onDisconnected();

 }

 }

 };

 public EmaDeviceManager(Context context) {

 this.context = context.getApplicationContext();

 }

 /**

 * Bind to Remote Management service

 */

 public boolean connect() {

 if (bound) {

 Log.w(TAG, "Already connected");

 return true;

 }

 Intent intent = new Intent();

 intent.setClassName(EMA_PACKAGE, EMA_SERVICE);

 try {

 bound = context.bindService(

 intent,

 serviceConnection,

 Context.BIND_AUTO_CREATE

);

 return bound;

 } catch (SecurityException e) {

 Log.e(TAG, "Permission denied when binding to service", e);

 return false;

 }

 }

 /**

 * Disconnect from service

 */

 public void disconnect() {

 if (bound) {

 context.unbindService(serviceConnection);

 bound = false;

 deviceService = null;

 }

 }

 /**

 * Check if connected

 */

 public boolean isConnected() {

 return bound && deviceService != null;

 }

 // ==

 // Device Information APIs

 // ==

 public DeviceInfo getDeviceInfo() throws RemoteException {

 ensureConnected();

 return deviceService.getDeviceInfo();

 }

 public SystemResources getSystemResources() throws RemoteException {

 ensureConnected();

 return deviceService.getSystemResources();

 }

 public NetworkStatus getNetworkStatus() throws RemoteException {

 ensureConnected();

 return deviceService.getNetworkStatus();

 }

 public HdmiStatus getHdmiStatus() throws RemoteException {

 ensureConnected();

 return deviceService.getHdmiStatus();

 }

 public ApiResponse refreshHdmiStatus() throws RemoteException {

 ensureConnected();

 return deviceService.refreshHdmiStatus();

 }

 // ==

 // Device Control APIs

 // ==

 public ApiResponse rebootDevice(int delaySeconds) throws RemoteException {

 ensureConnected();

 return deviceService.rebootDevice(delaySeconds);

 }

 public ApiResponse factoryResetDevice(boolean wipeExternal) throws RemoteException

 ensureConnected();

 return deviceService.factoryResetDevice(wipeExternal);

 }

 public ApiResponse wakeScreen() throws RemoteException {

 ensureConnected();

 return deviceService.wakeScreen();

 }

 // ==

 // HDMI CEC Control APIs

 // ==

 public ApiResponse toggleDisplayPower() throws RemoteException {

 ensureConnected();

 return deviceService.toggleDisplayPower();

 }

 // ==

 // Other APIs

 // ==

 public ScreenshotResult captureScreen(String format, int quality) throws RemoteExc

 ensureConnected();

 return deviceService.captureScreen(format, quality);

 }

 public CacheClearResult clearCache(CacheClearOptions options) throws RemoteExcepti

 ensureConnected();

 return deviceService.clearCache(options);

 }

 public String getApiVersion() throws RemoteException {

 ensureConnected();

 return deviceService.getApiVersion();

 }

 public boolean isFeatureSupported(String feature) throws RemoteException {

 ensureConnected();

 return deviceService.isFeatureSupported(feature);

 }

 private void ensureConnected() {

 if (!isConnected()) {

 throw new IllegalStateException("Not connected to Remote Management servic

 }

 }

 // Connection listener interface

 public interface ConnectionListener {

 void onConnected();

 void onDisconnected();

 }

 public void setConnectionListener(ConnectionListener listener) {

 this.connectionListener = listener;

 }

}

B.5 ANDROIDMANIFEST.XML REQUIREMENTS

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.partner.cms">

 <!-- Required permission to access Remote Management API -->

 <uses-permission android:name="com.amazon.ads.ema.permission.DEVICE_MANAGEMENT" />

 <!-- Standard Android permissions -->

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

 <application

 android:name=".CMSApplication"

 android:label="@string/app_name"

 android:icon="@mipmap/ic_launcher">

 <activity android:name=".CMSActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

B.6 BUILD CONFIGURATION

build.gradle (app level):

android {

 compileSdkVersion 30

 defaultConfig {

 applicationId "com.partner.cms"

 minSdkVersion 28

 targetSdkVersion 30

 versionCode 1

 versionName "1.0"

 }

 sourceSets {

 main {

 // Include AIDL files

 aidl.srcDirs = ['src/main/aidl']

 }

 }

 buildTypes {

 release {

 minifyEnabled true

 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'pr

 }

 }

}

dependencies {

 implementation 'androidx.appcompat:appcompat:1.3.1'

 implementation 'com.google.android.material:material:1.4.0'

}

proguard-rules.pro:

Keep AIDL interfaces-keep interface com.amazon.ads.ema.api.** { *; }

-keep class com.amazon.ads.ema.api.model.** { *; }

Keep Parcelables

-keepclassmembers class * implements android.os.Parcelable {

 public static final android.os.Parcelable$Creator CREATOR;

}

B.7 PROJECT STRUCTURE

your-cms-app/

├── src/
│ └── main/
│ ├── aidl/
│ │ └── com/
│ │ └── amazon/
│ │ └── ads/
│ │ └── ema/
│ │ └── api/
│ │ ├── IDeviceManagement.aidl
│ │ └── model/
│ │ ├── ApiResponse.aidl
│ │ ├── DeviceInfo.aidl
│ │ ├── SystemResources.aidl
│ │ ├── NetworkStatus.aidl
│ │ ├── HdmiStatus.aidl
│ │ ├── ScreenshotResult.aidl
│ │ ├── WifiConfig.aidl
│ │ ├── CacheClearOptions.aidl

http://proguard-rules.pro/
http://proguard-rules.pro/

│ │ └── (... other aidl files)
│ ├── java/
│ │ └── com/
│ │ └── amazon/
│ │ └── ads/
│ │ └── ema/
│ │ └── api/
│ │ └── model/
│ │ ├── ApiResponse.java
│ │ ├── DeviceInfo.java
│ │ ├── SystemResources.java
│ │ ├── NetworkStatus.java
│ │ ├── HdmiStatus.java
│ │ ├── ScreenshotResult.java
│ │ ├── WifiConfig.java
│ │ ├── CacheClearOptions.java
│ │ └── (... other java model files)
│ │ └── partner/
│ │ └── cms/
│ │ ├── EmaDeviceManager.java
│ │ ├── CMSActivity.java
│ │ └── (... other app code)
│ ├── res/
│ │ ├── layout/
│ │ │ └── activity_cms.xml
│ │ └── values/
│ │ └── strings.xml
│ └── AndroidManifest.xml
├── build.gradle
└── proguard-rules.pro

B.8 REFERENCE DEMO PROJECT

﻿https://file.signage.amazon.com/src/ads-cli-android-partner-api-demo-src.tar﻿
This project is a fully compilable and runable and well tested demo app, please find all the aidl and related model class in it.
The README.md and doc/KeyboardShotcuts.md are detailed intro documents.

Appendix C: FAQ

Q: My debug and release builds have different signatures. Which should I provide?
A: Provide both. During development/testing, your debug signature will be used. For production, your release signature will be
used. Both can be registered in the allowlist.

Q: What happens if I need to change my signing key?
A: You must notify the ADS team before the change. We'll update the allowlist to include both old and new signatures during a
transition period. After all devices are updated, the old signature can be removed. Please aware that the signature change will
impact your App OTA as well since the OTA only available between 2 release with a same signature.

Q: What if signature verification fails?
A: Remote Management will reject all API calls with an UNAUTHORIZED error code. Check that:

https://file.signage.amazon.com/src/ads-cli-android-partner-api-demo-src.tar

●

●

●

Your package name matches the allowlist entry

Your signature matches exactly (including correct format)

Your app is properly signed (not using Android's default debug key for production)

Q: Does the signature verification work offline?
A: Yes, after the first successful verification. The verification result is cached locally with a TTL (e.g. default 24 hours). Only the
initial verification or cache expiry requires network connectivity.

Q: What format should timestamps be in?
A: All timestamps use ISO 8601 format with timezone: "2025-10-11T23:01:00.000Z". This is human-friendly and
machine-parseable.

Q: Are memory and storage values in bytes or MB?
A: All values are in bytes to align with the REST API. Convert to MB by dividing by 1024 * 1024. Example: 560029696
bytes = 534 MB.

Q: Why do HDMI CEC commands sometimes not work?
A: CEC support varies by display. Not all displays support all CEC commands. Always:

●

●

●

●

●

Check canControl flag in status responses

Use refreshHdmiStatus() to query current state

Wait ~500ms after refresh for CEC response

Prefer toggle operations over explicit set operations

Handle code 501 (Not Implemented) gracefully

Q: How do I know if a feature is supported?
A: Use isFeatureSupported(String feature) API. Supported feature names: "HDMI_CEC", "SCREENSHOT",
"WIFI_CONFIG", "CACHE_CLEAR".

Q: What happens if I exceed the rate limit?
A: You'll receive a response with code 429 (Too Many Requests). Implement exponential backoff and retry logic. See Appendix
B for rate limit details.

Q: How do I handle asynchronous CEC operations?
A: CEC status updates are asynchronous. Call refreshHdmiStatus(), wait 500ms, then call getHdmiStatus() to get
updated power/audio state. See Appendix B.3 for examples.

Q: Can I call APIs on the main thread?
A: No. Always use background threads (AsyncTask, Executor, or Coroutines) for all API calls. AIDL calls are synchronous and
will block the calling thread.

Q: Where can I find complete code examples?
A: See Appendix B: AIDL Interface Definitions for:

●

●

●

●

●

Complete AIDL definitions

Full implementation examples

Service connection patterns

Error handling examples

Best practices

Q: How do I test the flow when a user is requested to allow Device Management API?
A: Just change your application's package name (applicationId in build.gradle) and then sideload it again (using adb install

yourapk). This will allow you to experience the dynamic permission request process, as the system will treat it as a new app
without pre-granted permissions.

Q: How do I handle Fire OS devices that don’t include the ADS API? Should I provide two separate builds, one with
the ADS API for Signage Sticks and one without it for Fire TV Sticks, or is it acceptable to ship a single app that
checks for the ADS API at runtime and falls back to the current behavior if it’s not available?
A: You can check if the Remote Management API is available at runtime using a helper method like this:

// Service details for binding

private static final String REMOTE_API_SERVICE_PACKAGE = "com.amazon.ads.ema.sys";

private static final String REMOTE_API_SERVICE_CLASS = "com.amazon.ads.ema.service.Dev

public boolean isServiceAvailable(Context context) {

 PackageManager pm = context.getPackageManager();

 Intent intent = new Intent();

 intent.setClassName(REMOTE_API_SERVICE_PACKAGE, REMOTE_API_SERVICE_CLASS);

 List<ResolveInfo> services = pm.queryIntentServices(intent, 0);

 return !services.isEmpty();

}

This allows you to detect whether the device has the Remote Management API and gracefully fall back to your current
behavior if it's not available. This approach is much simpler than maintaining two separate builds and will work seamlessly
across different Fire OS versions.

