Amazon Signage Remote Management API

Version Release Date Description
V1.0 Jan 20th,2026 Initial release

1. Overview

This document provides CMS partners with an introduction to Amazon Signage Remote Management API and is intended to
assist you with

e understanding the overall architecture and design philosophy
e preparing your technical infrastructure for integration

® beginning your planning integration roadmap

2. Executive Summary

2.1 WHAT IS AMAZON SIGNAGE REMOTE MANAGEMENT API?

The Remote Management API enables certified Content Management System (CMS) applications to directly control and
monitor Signage Stick devices through on-device communication. This enables CMS providers to offer enhanced device
management capabilities while maintaining security and user privacy.

2.2 KEY BENEFITS

For CMS providers:

e Direct device access with minimal latency
e Customizable user experience within CMS applications
e Simplified authentication, without the need for loud credentials

e Real-time device operations and feedback
For End Users:

e Single application for content and device management

e Faster response times for device operations
e Reduced network dependency

e Improved reliability

2.3 CORE CAPABILITIES

CMS ProviderApplication

v Device Information v Screen Capture
v Device Reboot v WiFi Status retrieval
v Status Monitoring v HDMI CEC operations

Local AIDL IPC

Remote Management Agent
(System Application)

2.4 WHO SHOULD READ THIS DOCUMENT?

® Product Managers: Sections 2, 3, 6, 8
e Technical Architects: Sections 4, 5, 7

e Developers: All sections, especially 4, 5, 6, 7

3. Background and Context

3.1 ECOSYSTEM

The Amazon Device Solution (ADS) Signage Stick ecosystem consists of three main components:

Device Manage ment Architecture Overview

g1 | Running Fi SN
: . — g FireQS _
Signage Stick }> | Enterprise Version CMS Backend

R A L

Lontent Management
& Scheduling

Devicel,

A
1] :__J User Level App
CMS App __'| Certified CMS Client

local Device Control
wvia AIDL Interface

J System Level App

] :
‘ ST IR AT = }*::] Efrgzrr?aggnnzﬂs ema.sys

h

Device Management
& Configuration

Patavteta s i s e e
-)
¢ Signage Manager «
R P

3.2 THE SOLUTION

Device-Level Integration using Android IPC (Inter-Process Communication) mechanism:
CMS App > Remote Management > Device Action (<100ms)

This approach provides:

e 10-50x faster response times compared to Cloud-to-Cloud based solution
e Offline capability for most operations
e Simplified integration with standard Android patterns

e Better security through local validation

4. Solution Architecture

4.1 HIGH-LEVEL ARCHITECTURE

Signage Stick Device

CMS Application (Provider App)

Device Management Service
- Connect to Remote Management
- Call management APIs
- Handle responses

AIDL Binder IPC

Remote Management Agent (System Application)

AIDL Service Interface

- Receive API calls

- Validate caller -identity
- Execute operations

Security & Authorization Module
- Package signature verification
- Allowlist checking

- Permission validation

Device Management Functions

- System control (reboot, etc.)
- Information retrieval

- Screen capture

HDMI CEC operations

Android System Services
- Device Policy Manager
Package Manager
- Power Manager
- WiFi Manager

Cloud Sync (Config & Logging)
v

- Allowlist
- Audit logs

Signage Manager Backend

4.2 COMMUNICATION FLOW

Remote Management Communication Flow

)

Q

L N
U/ - | CMS App I ‘ Remote Management AIDL Service
Iser SR L J
| Request device info -
bindService()

Validate caller

Security Validator Device Manager}

[Signage Manager

Check package
signature

Verify allowlist

alt [First time or cache expired]
Validate partner

- Allow/Deny + TTL

Cache result

<
e Vvalidation result
alt [Authorized]
Get device info
Device data
<
Return data
<
le Display info
[Not authorized]
Permission denied
<
Error message
<
sy | ems app | | Remote Management AIDL Service Security Validator Device ManagerJ [Signage Manager
VAN

4.3 TECHNOLOGY STACK

Android IPC Mechanism:

e AIDL (Android Interface Definition Language): Standard Android IPC

e Binder: Low-level Android communication infrastructure

e Service Binding: Android service connection pattern

Key Characteristics:

e Cross-process communication
e Type-safe method calls
e Built-in permission system

e Automatic lifecycle management

5 API Capabilities Overview
5.1 AVAILABLE OPERATIONS
The Remote Management API will provide the following capabilities:

5.1.1 Device Information

Device Identification

e Device Serial Number (DSN)

e Model name and hardware 1info
e 0S version and build number

System Status

e CPU usage

e Memory usage (total, free, used, ratio)
e Storage usage (total, free, used, ratio)

Hardware Monitoring

o CPU temperature (Celsius)

o GPU temperature (Celsius)

o Thermal status (NORMAL/WARNING/CRITICAL)

Network Status

e WiFi connection state

e Signal strength (dBm and level 0-4)
o Link speed (Mbps)

e Frequency (MHz)

e Connected SSID

e IP address and MAC address

HDMI & Display Status

o HDMI connection state

o EDID data (raw hex string)

e Monitor info (parsed from EDID)
o Display manufacturer and model
o Resolution and refresh rate

Note: All data structures align with REST API format. Values are in bytes (not MB), field names match REST API conventions.
See Appendix B for complete data models.

5.1.2 Device Control

System Operations
e Reboot device (with optional delay 0-300 seconds)
e Factory reset device (with external storage option)

HDMI CEC Operations

e Get HDMI connection and CEC status

o Refresh CEC status (query power and audio)
e Toggle display power (on/off)

e Get display information from EDID

Screen Capture

e Capture current screen

e Configurable format (PNG, JPEG)

e Quality control (1-100, JPEG only)
e Returns image data with metadata

Maintenance Operations
o Clear application caches (specific apps)

Important HDMI CEC Notes:

e CEC commands are asynchronous - responses arrive after 100-500ms
e Always call refreshHdmiStatus () before reading power/audio state

e Not all displays support all CEC commands - check canControl flag

See Appendix B for complete CEC API details and implementation examples

5.2 SAMPLE API CALLS (CONCEPTUAL)

Note: These are simplified conceptual examples. For complete implementation including error handling, async execution, and
full code examples, please refer to Appendix B: AIDL Interface Definitions.
Getting Device Information:

// Connect to Remote Management service
EmaDeviceManager deviceManager = new EmaDeviceManager (context);
deviceManager.connect();

// Get device info
DeviceInfo info = deviceManager.getDeviceInfo();
if (info.code == 200) {

String dsn = info.data.dsn;

String version = 1info.data.versionName;

long uptimeMs = info.data.elapsedMs;

// Get system resources

SystemResources resources = deviceManager.getSystemResources();

if (resources.code == 200) {
long memoryFreeMB = resources.data.memory.free / (1024 x 1024);
float memoryUsagePercent = resources.data.memory.ratio;
float cpuTemp = resources.data.temperature.cpuCelsius;

Controlling HDMI Display:

// Get current HDMI status

HdmiStatus status = deviceManager.getHdmiStatus();

if (status.code == 200 && status.data.connected) {
boolean displayOn = status.data.power.displayOn;

// Refresh CEC status (async operation)
deviceManager.refreshHdmiStatus();

Thread.sleep(500); // Wait for CEC response

HdmiStatus updatedStatus = deviceManager.getHdmiStatus();

// Toggle display power
ApiResponse response = deviceManager.toggleDisplayPower();
if (response.code == 200) {

// Command sent successfully

Capturing Screen:

ScreenshotResult result = deviceManager.captureScreen("PNG", 100);
if (result.code == 200) {

byte[] imageData = result.data.imageData;

int width = result.data.widthPx;

int height = result.data.heightPx;

// Convert to Bitmap

Bitmap bitmap = BitmapFactory.decodeByteArray(
imageData, 0, imageData.length

)5

Rebooting Device:

// Immediate reboot
ApiResponse response = deviceManager.rebootDevice(0);

// Delayed reboot (30 seconds)
ApiResponse response = deviceManager.rebootDevice(30);

if (response.code == 200) {
// Reboot scheduled successfully
Map<String, Object> data = response.data;
String executeAt = (String) data.get("executeAt");

For complete usage examples including:

e Full async implementation with AsyncTask/Coroutines
e Comprehensive error handling

e Service lifecycle management

e Ul integration examples

e Best practices and patterns

See Appendix B.4 - Service Connection Implementation

5.3 DATA FORMATS (PRELIMINARY)

All API responses follow a consistent RESTful structure aligned with the existing REST API:
Standard Response Structure:

{
"code": 200,
"message": "OK",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": { }
}

Key Format Specifications:

Field Format Example Notes
1 code Integer 200,401, 500 HTTP-style status codes
2 message String "OK", "Unauthorized" Human-readable status
3 timestamp ISO 8601 "2025-10-11T23:01:00.000Z" With timezone info
4 Memory/Storage Bytes 1743544320 Not MB - matches RESTAPI
5 Temperature Float 455 Celsius
6 Uptime Long 4887494 Milliseconds
7 Signal Strength Integer -45 dBm
8 Volume Integer 0-100 Percentage

Sample Response Examples:

For complete JSON response examples for all APIs, including:
e Device information responses
e System resources responses

e HDMI status responses (connected and not connected)

e Control operation responses

e Error responses

See Appendix B.3 - JSON Response Examples

5.4 ERROR HANDLING

All API errors follow RESTful conventions with consistent error structure:

{
"code": 401,
"message'": "Unauthorized",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"error": "Sdignature verification failed",
"packageName": "com.unknown.app",
"reason": "Package not in allowlist"
}
3

Common Error Codes:

Code Name
1 200 OK
2 400 Bad Request
3 401 Unauthorized
4 403 Forbidden
5 404 Not Found
6 429 Too Many Requests
7 500 Internal Server Error
8 501 Not Implemented

9 503 Service Unavailable

10 504 Gateway Timeout

Error Handling Best Practices:

try {

Description
Request succeeded
Invalid parameters
Signature verification failed
Permission denied
Resource or feature not found
Rate limit exceeded
Operation failed
Feature notimplemented

Remote Management service
unavailable

Operation timed out

Recommended Action
Continue processing
Check parameter values and types
Verify app signature and allowlist entry
Check device enrollment and permissions
Check if feature is supported
Implement backoff and retry logic
Log error and retry after delay

Check feature support, graceful fallback
Retry after delay, check service status

Increase timeout or retry

ApiResponse response = deviceManager.toggleDisplayPower();

switch (response.code) {

case 200:

// Success

handleSuccess(response) ;

break;
case 401:

// Unauthorized - signature issue

handleUnauthorized(response);

break;
case 501:
// Feature not available (e.g., CEC not supported)
handleFeatureNotAvailable(response);
break;
case 503:
// Service unavailable - retry
scheduleRetry();
break;
default:
handleUnknownError (response) ;
}
} catch (RemoteException e) {
// IPC communication error
handleCommunicationError(e);

5.5 DETAILED API SPECIFICATIONS

This section provides an overview of the API structure and conventions. For complete AIDL interface definitions, data models,
and implementation examples, please refer to Appendix B: AIDL Interface Definitions.

5.5.1 API Design Principles

All APIs follow RESTful conventions with consistent response structure:
Standard Response Format:

{
"code": 200, // HTTP-style status code
"message": "OK", // Human-readable message
"timestamp": "2025-10-11T23:01:00.000Z2", // ISO 8601 with timezone
"data": {} // API-specific response data
3

Status Code Categories:

® 2xx (Success): 200 (OK), 201 (Created), 204 (No Content)

e 4xx (Client Error): 400 (Bad Request), 401 (Unauthorized), 403 (Forbidden), 404 (Not Found), 429 (Too Many
Requests)

® 5xx (Server Error): 500 (Internal Server Error), 501 (Not Implemented), 503 (Service Unavailable), 504 (Gateway
Timeout)

5.5.2 Data Structure Alignment

The Local Partner API data structures are fully aligned with REST API to ensure consistency:
Memory and Storage:

® Values in bytes (not MB) - matches REST API format

e Field names: total, free, used, ratio - matches REST API naming

e Example from REST API:

"memory": {
"total": 1743544320,
"free": 560029696,
"used": 1183514624,
"ratio": 67.879814

Device Information:

e Includes all REST API fields: dsn, emaVersion, versionName, versionCode, kioskApp, timezone,
monitorInfo, edid, elapsedMs

e EDID and monitor info available in both device info and HDMI status

e Uptime tracked as elapsedMs (milliseconds since boot)
Timestamp Format:

e |SO 8601 with timezone: "2025-10-11T723:01:00.000Z"
e Human-friendly and machine-parseable

e Consistent across all API responses

5.5.3 API Categories

The Local Partner API provides five main categories of operations:
1. Device Information APIs

e getDeviceInfo() - DSN, version, build info, uptime
e getSystemResources () - Memory, storage, CPU, temperature
e getNetworkStatus () - WiFi connection, signal strength, IP address

e getHdmiStatus () - HDMI connection, CEC status, display info
2. Device Control APIs

e rebootDevice() - Reboot with optional delay

e factoryResetDevice() - Factory reset (with warning)

3. HDMI CEC Control APIs

e toggleDisplayPower () - Toggle display on/off
e refreshHdmiStatus() - Query current CEC status

4. Screen Capture API

e captureScreen() - Capture with format and quality options

5. Maintenance APls

e clearCache() - System and app cache clearing

5.5.4 HDMI CEC Implementation Notes

The HDMI CEC APIs are based on the Fire OS HDMI utility implementation (see HdmiUtils. java):
CEC Command Mapping:

e toggleDisplayPower () — Sends CEC USER_CONTROL_PRESSED with POWER code
e refreshHdmiStatus() — Sends GIVE_DEVICE_POWER_STATUS and GIVE_AUDIO_STATUS queries

Important CEC Considerations:

e CEC response is asynchronous - status updates arrive ~100-500ms after query
e Not all displays support all CEC commands
e Always check canControl flag in status responses

e Use refreshHdmiStatus () before reading power/audio state for latest values
5.5.5 Rate Limiting

To ensure system stability, the following rate limits apply:

API Category Rate Limit Notes
1 Device Information 10 requests/minute Cache results when possible
2 Control APIs (reboot, reset) 1 request/5 minutes Safety limitation
3 HDMI CEC APIs 5 requests/minute Avoid CEC bus congestion
4 Cache Clear 1 request/10 minutes Resource-intensive operation
5 Screen Capture 5 requests/minute CPU/memory intensive
6 Network Config 3 requests/minute Allow time for connection

Exceeding rate limits will resultin HTTP 429 (Too Many
Requests) error code.

5.5.6 Best Practices

Caching:

e Cache device information (DSN, version) - rarely changes
e Cache system resources for 10-30 seconds - reduces API calls

e Don't cache HDMI status - always refresh before reading
Error Handling:
e Always check code field in responses
e Handle all documented error codes gracefully
e Implement retry logic with exponential backoff for 5xx errors
® |og errors for debugging but don't spam logs
Async Operations:
e Use background threads (AsyncTask, Executor, Coroutines) for all API calls
e Never call APIs on main/Ul thread
e Show loading indicators during operations

e Provide user feedback on success/failure

HDMI CEC:

e Call refreshHdmiStatus () before reading power/audio state
e Wait 500ms after refresh before calling getHdmiStatus ()
e Check canControl flag before attempting control operations

e Handle CEC unavailable (code 501) gracefully
Resource Management:

e Bind to service when needed, unbind when done
e Don't maintain permanent connection unless actively using

e Clean up in onDestroy () or similar lifecycle methods
5.5.7 Complete API Reference

For complete details including:

e Full AIDL interface definitions

e All data model parcelables

® JSON response examples

e Service connection implementation
e Complete usage examples

® Project structure and build configuration

Please see Appendix B: AIDL Interface Definitions.

6. Implementation Status
6.1 IMPLEMENTATION CATEGORIES

The current APl implementation falls into three categories:

Status Description Example APIs
1 Fully Implemented Returns real, live data from device getDeviceInfo(), getNetworkStatus()
2 ## Simulated Data Returns realistic but dummy data for testing getSystemResources() - temp + cpu

6.2 DETAILED IMPLEMENTATION STATUS
6.2.1 Device Information APIls

getDevicelnfo() - Fully Implemented

e All fields return real device data
e DSN, version info, timezone, uptime are accurate

e EDID data reflects actual HDMI connection state

getSystemResources() - ## Simulated Data

"memory": {
"total": 1743544320, // 4 Real value
"free": 560029696, // [Real value

Release phase

2026,Jan

will return dummy data until 2026, April

"used": 1183514624, // %4 Real value

"ratio": 67.879814 // 4 Real value
s
"storage": {
"total": 12520574976, // 4 Real value
"free": 12058910720, // 4 Real value
"used": 461664256, // 4 Real value
"ratio": 3.6872451 // 4 Real value
1,
"temperature": {
"cpuCelsius": 45.5, // #% Simulated (random 40-50°C)
"gpuCelsius": 48.2, // #% Simulated (random 45-55°C)
"thermalState": "NORMAL" // #% Always returns "NORMAL"
3
"cpu": {
"usagePercent": 15.6 // #% Simulated (random 10-30%)
}

getNetworkStatus() - Fully Implemented
e WiFi connection state, signal strength, IP address are real
e All network information reflects actual device status

6.2.3 Device Control APIs

rebootDevice() - Fully Implemented

e Device will actually reboot after specified delay

e All functionality works as documented
factoryResetDevice() - Fully Implemented

® Returns success response but does NOT perform actual factory reset

e Implemented as safety measure during testing phase
clearCache() - ## Simulated Data
® Returns realistic freed space values but may not perform actual cache clearing

e Operation duration and app count are simulated

6.2.4 HDMI CEC APIs

Overview: HDMI CEC functionality is implemented via Fire OS's AmazonHdm1iServiceManager, providing power control
and display information retrieval. However, due to CEC protocol compatibility differences across devices, some features have

limitations on specific TV brands.
Power Control APIs

API Fire TV Samsung TV

Notes

1 setDisplayPower (true) Fully Working Fully Working Uses multiple CEC commands for compatibility
2 setDisplayPower (false) Fully Working Fully Working Standard STANDBY command
3 toggleDisplayPower () Fully Working Fully Working Toggles between on/off states

getHdmiStatus() - Fully Implemented (some fields have limitations)

e connected: Real-time HDMI connection detection
e display.manufacturer/model/resolution: ['4 Parsed from EDID, accurate and reliable
e power.displayOn: ['4 Power status query available

e power.canControl: ['4 All CEC devices support power control

CMS Integration Recommendations

1. Power Control: Safe to use, best compatibility across all devices

6.3 TESTING RECOMMENDATIONS
6.3.1 What You Can Test Now

API Integration

e Service binding and connection
e Authentication and authorization
® Response format and error handling

® Rate limiting behavior
Real Device Data

e Device identification (DSN, version)
e Network connectivity status
e HDMI connection detection

e Memory and storage information
Core Device Control

e Device reboot functionality

® Permission system behavior

7. Integration Approach

7.1 INTEGRATION ARCHITECTURE

Integration Architecture Overview

CMS Application)\

CMS Ul Layer

Update Ul

Business Logic

Use APl Result

Device Management Service

K
Bind & Call Response
Remote Managemen\t\@gent Android System
|
AIDL Service System Services
~7 |
Validate Allow/Deny Execute \Return System calls /Results
=
Security Layer Device Operations

7.2 API DISTRIBUTION

ADS will provide:
Remote Management API:

Remote Management API
AIDL interface definitions
Helper classes for service binding
Data models for requests/responses
Error handling utilities
Sample code and documentation

Integration Steps (refer to B.8 Reference demo project for the fully workable implementation) :

1. Add dependency to your build.gradle

. Declare required permissions in AndroidManifest.xml
Dynamically request DEVICE_MANAGEMENT permission
Initialize Local API in your application

Bind to Remote Management service

> o s N

Make API calls as needed

CMS need to provide:

Please provide the following information to the ADS team:

Application Information:
Package name (e.g., com.yourcompany.cms)
Application signing certificate SHA-256 digest (see below)
t:: Debug build signature (for testing)
Release build signature (for production) ReSigned by FireTV Appstore
Certificate Authority (if applicable)
Target Android API level

Debug vs Release Signatures:
Your app will have different signatures for debug and release builds:

1. For Testing Phase: Provide debug build signature
2. For Production Phase: Provide release build signature

3. Both: If you want to test with production builds
Signature Format:

° Lowercase hexadecimal: c8a2e9bccf597c2fb6dc66bee293fc13f2fcd47ec77bc6b2b0d52c11f51192ab8
e > Uppercase with colons: C8:A2:E9:BC:CF:59:7C:2F: ...
e) Base64 encoded: yKLpvM9ZfC+23Ga. ..

Appendix A: Glossary

Term Definition
1 ADS Amazon Device Solution - The team developing enterprise Fire OS products
2 AIDL Android Interface Definition Language - Android's IPC mechanism
3 APK Android Package - Application installation file
4 Certificate Digest SHA-256 hash of the signing certificate
5 CMS Content Management System - Software for managing digital signage content
6 DSN Device Serial Number - Unique identifier for each device
7 Remote Management Endpoint Management Agent Plus - System app for device management
8 IPC Inter-Process Communication - Mechanism for apps to communicate
9 SHA-256 Secure Hash Algorithm 256-bit - Cryptographic hash function
10 Signature Scheme APK signing method (v1, v2, or v3)
11 Signage Manager Cloud management platform for Signage Stick devices
12 TIL Time To Live - Cache expiration duration

Appendix B: AIDL Interface Definitions

This section provides the complete AIDL interface definitions for the Remote Management API.

B.1 MAIN SERVICE INTERFACE

File: IDeviceManagement.aidl

package com.amazon.ads.ema.api;

import com.amazon.ads.ema.api.model.DeviceInfo;

import com.amazon.ads.ema.api.model.SystemResources;
import com.amazon.ads.ema.api.model.NetworkStatus;
import com.amazon.ads.ema.api.model.HdmiStatus;

import com.amazon.ads.ema.api.model.ScreenshotResult;
import com.amazon.ads.ema.api.model.CacheClearOptions;
import com.amazon.ads.ema.api.model.CacheClearResult;
import com.amazon.ads.ema.api.model.WifiConfig;

import com.amazon.ads.ema.api.model.ApiResponse;

/

X 2k 3 X X% X 2k 3 X X X 2 2 % X X % 2 2 X X X % 2 % X X X% X% % X%

*

Remote Management Local Partner API
Main interface for device management operations

All responses follow RESTful convention:
- code: HTTP-style status code (200 = success, 4xx = client error, 5xx
- message: Human-readable status message

server err

- timestamp: ISO 8601 format with timezone (e.g., "2025-10-11T23:01:00.000Z")

- data: Response data as Map or typed object
Status Code Definitions (aligned with HTTP conventions):

2xx: Success

- 200: OK - Request succeeded

- 201: Created - Resource created successfully

- 204: No Content - Request succeeded but no content to return

4xx: Client Errors

- 400: Bad Request - Invalid parameters

- 401: Unauthorized - Signature verification failed
- 403: Forbidden - Permission denied

- 404: Not Found - Resource or feature not found

- 429: Too Many Requests - Rate limit exceeded

5xx: Server Errors

- 500: Internal Server Error - Operation failed

- 501: Not Implemented - Feature not implemented

- 503: Service Unavailable - Remote Management service unavailable
- 504: Gateway Timeout - Operation timed out

@version 1.0
@since 2026-Q1

*/

interface IDeviceManagement {

// =========sm=ssmmssmmmsmmsssmmssmmssmsssmssssssssssssosszoss
e e

VAds

*x Get device serial number (DSN) and basic information

* @return DeviceInfo with code 200 on success
* @throws SecurityException if caller is not authorized (code 401)
*/

DeviceInfo getDeviceInfo();

VAds
*x Get system resource information (CPU, memory, storage, temperature)
* @return SystemResources with code 200 on success
* @throws SecurityException if caller is not authorized (code 401)
*/

SystemResources getSystemResources();

Jx*
* Get network status and WiFi information
*x @return NetworkStatus with code 200 on success
* @throws SecurityException if caller is not authorized (code 401)
*/
NetworkStatus getNetworkStatus();

VAis
Get HDMI connection and CEC status
Note: Power and audio states are from last CEC query.

Call refreshHdmiStatus() to update with current values.

@return HdmiStatus with code 200 on success
@throws SecurityException if caller is not authorized (code 401)

X% % % % % %

*/
HdmiStatus getHdmiStatus();

*

Refresh HDMI power and audio status by sending CEC queries

This triggers CEC GIVE_DEVICE_POWER_STATUS and GIVE_AUDIO_STATUS commands.
Status will be updated asynchronously when device responds.

Call getHdmiStatus() after ~500ms to get updated values.

X % % % % % %

@return ApiResponse with code 200 if queries sent successfully
*/
ApiResponse refreshHdmiStatus();

/| seR=s=emm=mssEssscosssmassossssssssssssesscesssmsszsssssess

X % % % %

Reboot the device

@param delaySeconds Delay before reboot (0 for immediate, max 300)
@return ApiResponse with code 200 on success

@throws SecurityException if caller is not authorized (code 401)
@throws IllegalArgumentException if delaySeconds invalid (code 400)

*/

Ap

/

X% % % % % %

iResponse rebootDevice(int delaySeconds);

*

Factory reset the device
WARNING: This will erase all user data and cannot be undone

@param wipeExternalStorage Whether to wipe external storage
@return ApiResponse with code 200 on success
@throws SecurityException if caller is not authorized (code 401)

*/

Ap

//

Ap

X % % % % % % %

iResponse factoryResetDevice(boolean wipeExternalStorage);

Toggle display power via HDMI CEC
Sends CEC POWER command (toggles between ON and STANDBY)

@return ApiResponse with code 200 if command sent
code 501 if CEC not available
code 503 if HDMI not connected

iResponse toggleDisplayPower () ;

*

Set display power state via HDMI CEC
Note: Not all displays support explicit ON/OFF commands.
Consider using toggleDisplayPower () for better compatibility.

@param powerOn true to turn on, false to turn off
@return ApiResponse with code 200 if command sent
code 501 if CEC not available or command not supported

*/

Ap

iResponse setDisplayPower (boolean powerOn) ;

// e e e e e e e e e e e e I e

X%

Capture current screen

@param format Image format: "PNG" or "JPEG"

@param quality Quality (1-100, only for JPEG)

@return ScreenshotResult with code 200 and image data on success
code 400 if parameters invalid

X % % % % %

*/

ScreenshotResult captureScreen(String format, int quality);

/| seR=s=msmzmssEssscosssmassossssssssssssoascmsssmsszsssssess

Vi ds
*x Clear system and app caches
* @param options Cache clear options
* @return CacheClearResult with code 200 and freed space info

*/

CacheClearResult clearCache(in CacheClearOptions options);

// 1ttt
/| seR=s=emm=mssEssscosssmassossssssssssssoscmsssmsssssssseas

Jx*
* Get API version
*x @return Version string (e.g., "1.0.0")
*/

String getApiVersion();

Jx*
*x Check if specific feature is supported on this device
* Features: "HDMI_CEC", "SCREENSHOT'", "WIFI_CONFIG", "CACHE_CLEAR"
*
* @param feature Feature name
* @return true if supported, false otherwise

*/

boolean isFeatureSupported(String feature);

B.2 DATA MODEL AIDL FILES

File: ApiResponse.aidl

package com.amazon.ads.ema.api.model;

Vaa:
*x Standard API response following RESTful conventions
* Matches common REST API structure: code, message, data

*/
parcelable ApiResponse {
int code; // Status code (200 = success, 4xx = client error, 5xx =
String message; // Human-readable message
String timestamp; // ISO 8601 format: "2025-10-11T723:01:00.000Z"
java.util.Map data; // Response data as key-value pairs
3

File: DeviceInfo.aidl

package com.amazon.ads.ema.api.model;

parcelable DeviceInfo {

int code; // Status code
String message; // Status message
String timestamp; // ISO 8601: '"2025-160-11T23:01:00.000Z"
DeviceData data; // Device data

1

parcelable DeviceData {
String dsn; // Device Serial Number
String kioskApp; // Current kiosk/CMS app package name
String timezone; // Timezone (e.g., "Asia/Singapore-GMT+08:00")
String monitorInfo; // Monitor info (e.g., "DELL SP2418H-1920x1080")
String edid; // Raw EDID hex string (all zeros if no HDMI)
long elapsedMs; // Device uptime in milliseconds

File: SystemResources.aidl

package com.amazon.ads.ema.api.model;

parcelable SystemResources {

int code; // Status code
String message; // Status message
String timestamp; // ISO 8601: '"2025-160-11T23:01:00.000Z"

ResourceData data; // Resource data

parcelable ResourceData {
MemoryInfo memory;
StorageInfo storage;
TemperatureInfo temperature;
CpuInfo cpu;
long elapsedMs;

parcelable MemoryInfo {
long total;
long free;
long used;
float ratio;

parcelable StorageInfo {
long total;
long free;
long used;
float ratio;

parcelable TemperatureInfo {
float cpuCelsius;
float gpuCelsius;
String thermalState;

parcelable CpuInfo {
float usagePercent;

File: NetworkStatus.aidl

//

//

//
//

//
//

//

//
//
//

//

Device uptime in milliseconds

Total memory in bytes
Free memory in bytes
Used memory in bytes
Usage ratio (0-100)

Total internal storage in bytes
Free storage in bytes

Used storage in bytes

Usage ratio (0-100)

CPU temperature in Celsius
GPU temperature in Celsius
"NORMAL", "WARNING", "CRITICAL"

Overall CPU usage (0-100)

package com.amazon.ads.ema.api.model;

parcelable NetworkStatus {
int code;
String message;
String timestamp;
NetworkData data;

parcelable NetworkData {
WifiInfo wifi;
EthernetInfo ethernet;

parcelable WifiInfo {
boolean connected;
String ssid;

//
//
//
//

Status code

Status message

ISO 8601: "2025-10-11T723:01:00.000Z"
Network data

int signalStrengthDbm; // Signal strength in dBm (e.g., —-45)

int signalLevel; // Signal level 0-4 (4 = excellent)
int linkSpeedMbps; // Link speed in Mbps
int freque // Frequency in MHz (2400-2500 or 5000-6000)

String ipAddress;
String macAddress;

parcelable EthernetInfo {
boolean connected;
String ipAddress;
String macAddress;

File: HdmiStatus.aidl

package com.amazon.ads.ema.api.model;

parcelable HdmiStatus {

int code; // Status code
String message; // Status message
String timestamp; // ISO 8601: '"2025-10-11T23:01:00.000Z"
HdmiData data; // HDMI data
1
parcelable HdmiData {
boolean connected; // HDMI cable connected (based on EDID)
String edid; // Raw EDID hex string (all zeros if not connected)
String monitorInfo; // Parsed monitor info (e.g., "DELL SP2418H-1920x108¢
boolean cecEnabled; // CEC i1s enabled
boolean activeSource; // Device 1is active source
DisplayInfo display; // Parsed display info (null if not connected)
PowerStatus power; // Power status (from CEC query)
AudioStatus audio; // Audio status (from CEC query)
}
parcelable DisplayInfo {
String manufacturer; // Display manufacturer (from EDID)
String model; // Display model (from EDID)
String resolution; // e.g., "1920x1080"
int refreshRate; // e.g., 60 (Hz)
1
parcelable PowerStatus {
boolean displayOn; // Display power state (from CEC query)
String state; // "ON'", "STANDBY'", "TRANSITIONING_ON", "TRANSITIONIN\
boolean canControl; // Can control via CEC
long lastUpdatedMs; // Last query timestamp (epoch millis)

parcelable AudioStatus {
int volume; // Volume level 0-100 (from CEC query)
boolean muted; // Mute state (from CEC query)

boolean canControl; // Can control via CEC
long lastUpdatedMs; // Last query timestamp (epoch millis)

File: ScreenshotResult.aidl

package com.amazon.ads.ema.api.model;

parcelable ScreenshotResult {

int code; // Status code

String message; // Status message

String timestamp; // ISO 8601: '"2025-10-11T23:01:00.00600Z"

ScreenshotData data; // Screenshot data (null if failed)
1
parcelable ScreenshotData {

byte[] imageData; // Raw image bytes

String format; // "PNG" or "JPEG"

int widthPx; // Image width in pixels

int heightPx; // Image height in pixels

long fileSizeBytes; // Image size in bytes

File: WifiConfig.aidl

package com.amazon.ads.ema.api.model;

parcelable WifiConfig {
String ssid;
String password;
String securityType; // "OPEN", "WEP", "WPA", "WPA2_PSK", "WPA3"
boolean hidden;
int priority;
StaticIpConfig staticIp; // TBD, null for DHCP

parcelable StaticIpConfig {
String ipAddress;
String gateway;
String dnsl;
String dns2;
String subnetMask;

File: CacheClearOptions.aidl

package com.amazon.ads.ema.api.model;

parcelable CacheClearOptions {
boolean systemCache; // Clear system cache

boolean appCache; // Clear all app caches
String[] packageNames; // Specific packages (null for all)

File: CacheClearResult.aidl

package com.amazon.ads.ema.api.model;

parcelable CacheClearResult {

int code; // Status code
String message; // Status message
String timestamp; // ISO 8601: '"2025-10-11T23:01:00.000Z"
CacheClearData data; // Cache clear data
3
parcelable CacheClearData {
long systemCacheFreedMB; // System cache freed in MB
long appCacheFreedMB; // App cache freed in MB
int appsProcessed; // Number of apps processed
long totalFreedMB; // Total freed space in MB
long durationMs; // Operation duration in milliseconds

B.3 JSON RESPONSE EXAMPLES

Example: getDevicelnfo() Response

{
"code": 200,
"message": "OK",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"dsn": "GO72IMO834641AKK",
"emaVersion": "v1.7.3-118",
"versionName": "2.3.0",
"versionCode": 29,
"kioskApp": "tv.ablesign.app",
"timezone": "Asia/Singapore-GMT+08:00",
"monitorInfo": "null-1920x1080",
"edid": "0OOOOOOOOOOOCOOOOEOOOOOOEONOOOEOEONOOOEONEOOEOENEOOEONEOOOONENAOOEOEONOOOEOAOOCE
"elapsedMs": 4887494
3
3

Example: getSystemResources() Response

"code": 200,
"message": "OK",
"timestamp": "2025-10-11T23:01:00.000Z",

"data": {

"memory": {
"total": 1743544320,
"free": 560029696,
"used": 1183514624,
"ratio": 67.879814
},
"storage": {
"total": 12520574976,
"free": 12058910720,
"used": 461664256,
"ratio": 3.6872451

1,

"temperature'": {
"cpuCelsius": 45.5,
"gpuCelsius": 48.2,
"thermalState": "NORMAL"

3,

"CpU": {
"usagePercent": 15.6

b

"elapsedMs": 4887494

Example: getHdmiStatus() Response (No HDMI Connected)

{
"code": 200,
"message": "OK",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"connected": false,
"edid": "0OOOOOO000000000....",

"monitorInfo": "null-1920x1080",
"cecEnabled": false,
"activeSource": false,
"display": null,
"power": {
"displayOn": false,
"state'": "UNKNOWN",
"canControl": false,
"lastUpdatedMs": 0
},
"audio": {
"volume": 0,
"muted": false,
"canControl": false,
"lastUpdatedMs": 0

Example: getHdmiStatus() Response (HDMI Connected)

"code": 200,

"message": "OK",

"timestamp": "2025-10-11T23:01:00.000Z",
"data": {

"connected": true,
"edid": "OOffffffffffff0010ac00al423235301e1b010380351e78e€a0565a756529c270f5054a5¢4
"monitorInfo": "DELL SP2418H-1920x1080",
"cecEnabled": true,
"activeSource": true,
"display": {
"manufacturer": "DELL",
"model": "SP2418H",
"resolution": "1920x1080",
"refreshRate": 60
1,
"power": {
"displayOn": true,
"state": "ON",
"canControl": true,
"lastUpdatedMs": 1728684060000

1,
"audio": {
"volume": 15,
"muted": false,
"canControl": true,
"lastUpdatedMs": 1728684060000
}

Example: toggleDisplayPower() Response

{
"code": 200,
"message'": "CEC command sent successfully",
"timestamp": "2025-10-11T23:01:00.000Z2",
"data": {
"action": "toggleDisplayPower",
"executed": true,
"command": "POWER_TOGGLE"
}
3

Example: rebootDevice() Response

{
"code": 200,
"message'": "Reboot scheduled",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"action": "reboot",

"scheduled": true,
"executeAt": "2025-10-11T23:01:30.000Z",

"delaySeconds": 30
}

Example: Error Response (Unauthorized)

{
"code": 401,
"message'": "Unauthorized",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"error": "Signature verification failed",
"packageName": "com.unknown.app",
"reason": "Package not in allowlist"
}
}

Example: Error Response (CEC Not Available)

{
"code": 501,
"message'": "Feature not implemented",
"timestamp": "2025-10-11T23:01:00.000Z",
"data": {
"error": "HDMI CEC control is not available",
"feature'": "HDMI_CEC",
"reason": "Display does not support CEC or HDMI not connected"
}
3

B.4 SERVICE CONNECTION IMPLEMENTATION

EMA Device Manager Wrapper (refer to B.8 Reference demo project for the fully workable implementation) :

// Permission request code
private static final int REQUEST_DEVICE_MANAGEMENT_PERMISSION = 1001;
private static final String DEVICE_MANAGEMENT_PERMISSION = '"com.amazon.ads.ema.permiss

// Check and request permission before connecting to API
checkAndRequestPermission();

Vids

*x Check if DEVICE_MANAGEMENT permission is granted and request if needed

*/

private void checkAndRequestPermission() {

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
if (ContextCompat.checkSelfPermission(this, DEVICE_MANAGEMENT_PERMISSION)
!= PackageManager.PERMISSION_GRANTED) {
L.i("DEVICE_MANAGEMENT permission not granted, requesting...");

// Check if we should show an explanation
if (ActivityCompat.shouldShowRequestPermissionRationale(this, DEVICE_MANAGE
// Show explanation dialog before requesting permission
showPermissionExplanationDialog();
} else {
// Directly request permission
requestDeviceManagementPermission();
}
} else {
L. ("DEVICE_MANAGEMENT permission already granted");
// Permission already granted, connect to API
connectToPartnerApi();
}
} else {
// For API level < 23, permission is granted at install time
L.i("API level < 23, no runtime permission needed");
connectToPartnerApi();

Allow ADS Partner APl Demo to

de settings and retrieve
information?

You can change this later in Settings > Apps

Note: This manually grant step is only needed during the debug/onboarding phase since the Remote Management Agent will
automatically grant all the runtime permissions for the certified CMS agents.

package com.partner.cms;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;
import android.os.IBinder;

import android.os.RemoteException;

import android.util.Log;

import com.amazon.ads.ema.api.IDeviceManagement;
import com.amazon.ads.ema.api.model.*;

public class EmaDeviceManager {
private static final String TAG = "EmaDeviceManager";
private static final String EMA_PACKAGE = "com.amazon.ads.ema.sys";

private static final String EMA_SERVICE = "com.amazon.ads.ema.sys.DeviceManagement

private Context context;

private IDeviceManagement deviceService;
private boolean bound = false;

private ConnectionListener connectionListener;

private final ServiceConnection serviceConnection = new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName name, IBinder service) {
deviceService = IDeviceManagement.Stub.asInterface(service);
bound = true;
Log.i(TAG, "Connected to Remote Management service'");

if (connectionListener != null) {
connectionListener.onConnected();
}
}
@Override

public void onServiceDisconnected(ComponentName name) {
deviceService = null;
bound = false;
Log.w(TAG, "Disconnected from Remote Management service");

if (connectionListener != null) {
connectionListener.onDisconnected();

s

public EmaDeviceManager (Context context) {
this.context = context.getApplicationContext();

VAds
* Bind to Remote Management service
*/
public boolean connect() {
if (bound) {
Log.w(TAG, "Already connected");
return true;

Intent intent = new Intent();
intent.setClassName (EMA_PACKAGE, EMA_SERVICE);

try {
bound = context.bindService(
intent,
serviceConnection,
Context.BIND_AUTO_CREATE
)5
return bound;
} catch (SecurityException e) {

Log.e(TAG, "Permission denied when binding to service", e);
return false;

VAis
* Disconnect from service
*/
public void disconnect() {
if (bound) {
context.unbindService(serviceConnection);
bound = false;
deviceService = null;

}
}
Jx*
* Check if connected
*/
public boolean isConnected() {
return bound && deviceService != null;
}
// ==================sssssssssssssssssssssssssssssssssssssssaas
// Device Information APIs
// ==========szzzz=sssass

public DeviceInfo getDeviceInfo() throws RemoteException {
ensureConnected() ;
return deviceService.getDeviceInfo();

public SystemResources getSystemResources() throws RemoteException {
ensureConnected() ;
return deviceService.getSystemResources();

public NetworkStatus getNetworkStatus() throws RemoteException {
ensureConnected() ;
return deviceService.getNetworkStatus();

public HdmiStatus getHdmiStatus() throws RemoteException {
ensureConnected() ;
return deviceService.getHdmiStatus();

public ApiResponse refreshHdmiStatus() throws RemoteException {
ensureConnected() ;
return deviceService.refreshHdmiStatus();

// e e e e e e e e e e e e I e

/| seR=s=mmm=mssEssscosssmassossssssssssssosscmsssmsszssssseas

public ApiResponse rebootDevice(int delaySeconds) throws RemoteException {
ensureConnected();
return deviceService.rebootDevice(delaySeconds);

public ApiResponse factoryResetDevice(boolean wipeExternal) throws RemoteExceptior
ensureConnected() ;
return deviceService.factoryResetDevice(wipeExternal);

public ApiResponse wakeScreen() throws RemoteException {
ensureConnected() ;
return deviceService.wakeScreen();

// 1ttt
/| seR=s=mmm=mssEssscosssmassossssssssssssosscmsssmsszssssseas

public ApiResponse toggleDisplayPower () throws RemoteException {
ensureConnected() ;
return deviceService.toggleDisplayPower();

// =============smmmsmmmsmmsssmsssmmssmmsssssssssssssssassszoes
e

public ScreenshotResult captureScreen(String format, int quality) throws RemoteExc
ensureConnected() ;
return deviceService.captureScreen(format, quality);

public CacheClearResult clearCache(CacheClearOptions options) throws RemoteExcept-
ensureConnected() ;
return deviceService.clearCache(options);

public String getApiVersion() throws RemoteException {
ensureConnected() ;
return deviceService.getApiVersion();

public boolean isFeatureSupported(String feature) throws RemoteException {
ensureConnected() ;
return deviceService.isFeatureSupported(feature);

private void ensureConnected() {
if (!isConnected()) {
throw new IllegalStateException('"Not connected to Remote Management servic

// Connection listener interface
public interface ConnectionListener {
void onConnected();
void onDisconnected();

public void setConnectionListener(ConnectionListener listener) {
this.connectionListener = listener;

B.5 ANDROIDMANIFEST.XML REQUIREMENTS

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.partner.cms">

<!-- Required permission to access Remote Management API -->
<uses-permission android:name="com.amazon.ads.ema.permission.DEVICE_MANAGEMENT" />

<!-- Standard Android permissions -->

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<application
android:name=".CMSApplication"
android:label="@string/app_name"
android:icon="@mipmap/ic_launcher'">

<activity android:name=".CMSActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>
</manifest>

B.6 BUILD CONFIGURATION

build.gradle (app level):

android {
compileSdkVersion 30

defaultConfig {
applicationId "com.partner.cms"
minSdkVersion 28
targetSdkVersion 30
versionCode 1

versionName "1.0"

sourceSets {
main {
// Include AIDL files
aidl.srcDirs = ['src/main/aidl']

buildTypes {
release {
minifyEnabled true
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'),

dependencies {
implementation 'androidx.appcompat:appcompat:1.3.1'
implementation 'com.google.android.material:material:1.4.0'

proguard-rules.pro:

Keep AIDL interfaces-keep interface com.amazon.ads.ema.api.** { *; }
-keep class com.amazon.ads.ema.api.model.** { *x; }

Keep Parcelables

-keepclassmembers class * implements android.os.Parcelable {
public static final android.os.Parcelable$Creator CREATOR;

}

B.7 PROJECT STRUCTURE

your-cms-app/

— src/
L main/
— aidl/
L com/
L amazon/
L ads/
L ema/
L— api/
t:: IDeviceManagement.aidl
model/

— ApiResponse.aidl

—— DeviceInfo.aidl

— SystemResources.aidl
— NetworkStatus.aidl

— HdmiStatus.aidl

— ScreenshotResult.aidl
— WifiConfig.aidl

— CacheClearOptions.aidl

http://proguard-rules.pro/
http://proguard-rules.pro/

L— (... other aidl files)
— java/
L com/
L amazon/
— ads/
L ema/
L api/
L model/
— ApiResponse.java
— DevicelInfo.java
— SystemResources.java
— NetworkStatus.java
—— HdmiStatus.java
— ScreenshotResult.java
— WifiConfig.java
— CacheClearOptions.java
— (... other java model files)
L partner/
= cms/
EmaDeviceManager.java
CMSActivity.java
(... other app code)
— res/
layout/
L activity_cms.xml
values/
— strings.xml
— AndroidManifest.xml
— build.gradle

— proguard-rules.pro

B.8 REFERENCE DEMO PROJECT

https://ffile.signage.amazon.com/src/ads-cli-android-partner-api-demo-src.tar
This project is a fully compilable and runable and well tested demo app, please find all the aidl and related model class in it.
The README.md and doc/KeyboardShotcuts.md are detailed intro documents.

Appendix C: FAQ

Q: My debug and release builds have different signatures. Which should | provide?
A: Provide both. During development/testing, your debug signature will be used. For production, your release signature will be
used. Both can be registered in the allowlist.

Q: What happens if | need to change my signing key?

A: You must notify the ADS team before the change. We'll update the allowlist to include both old and new signatures during a
transition period. After all devices are updated, the old signature can be removed. Please aware that the signature change will
impact your App OTA as well since the OTA only available between 2 release with a same signature.

Q: What if signature verification fails?
A: Remote Management will reject all API calls with an UNAUTHORIZED error code. Check that:

https://file.signage.amazon.com/src/ads-cli-android-partner-api-demo-src.tar

® Your package name matches the allowlist entry

e Your signature matches exactly (including correct format)

® Your app is properly signed (not using Android's default debug key for production)
Q: Does the signature verification work offline?

A: Yes, after the first successful verification. The verification result is cached locally with a TTL (e.g. default 24 hours). Only the
initial verification or cache expiry requires network connectivity.

Q: What format should timestamps be in?
A: All timestamps use I1SO 8601 format with timezone: ""2025-10-11T723:01:00.000Z". This is human-friendly and
machine-parseable.

Q: Are memory and storage values in bytes or MB?
A: All values are in bytes to align with the REST API. Convert to MB by dividing by 1024 * 1024. Example: 560029696
bytes = 534 MB.

Q: Why do HDMI CEC commands sometimes not work?
A: CEC support varies by display. Not all displays support all CEC commands. Always:
e Check canControl flag in status responses
e Use refreshHdmiStatus () to query current state
e Wait ~500ms after refresh for CEC response
e Prefer toggle operations over explicit set operations
e Handle code 501 (Not Implemented) gracefully
Q: How do | know if a feature is supported?

A: Use isFeatureSupported(String feature) APl Supported feature names: "HDMI_CEC", "SCREENSHOT",
"WIFI_CONFIG", "CACHE_CLEAR".

Q: What happens if | exceed the rate limit?
A: You'll receive a response with code 429 (Too Many Requests). Implement exponential backoff and retry logic. See Appendix
B for rate limit details.

Q: How do | handle asynchronous CEC operations?
A: CEC status updates are asynchronous. Call refreshHdmiStatus (), wait 500ms, then call getHdmiStatus () to get
updated power/audio state. See Appendix B.3 for examples.

Q: Can | call APIs on the main thread?
A: No. Always use background threads (AsyncTask, Executor, or Coroutines) for all API calls. AIDL calls are synchronous and
will block the calling thread.

Q: Where can | find complete code examples?
A: See Appendix B: AIDL Interface Definitions for:
e Complete AIDL definitions
e Full implementation examples
e Service connection patterns
e Error handling examples
® Best practices

Q: How do | test the flow when a user is requested to allow Device Management API?
A: Just change your application's package name (applicationld in build.gradle) and then sideload it again (using adb install

yourapk). This will allow you to experience the dynamic permission request process, as the system will treat it as a new app
without pre-granted permissions.

Q: How do | handle Fire OS devices that don’t include the ADS API? Should | provide two separate builds, one with
the ADS API for Signage Sticks and one without it for Fire TV Sticks, or is it acceptable to ship a single app that
checks for the ADS API at runtime and falls back to the current behavior if it’s not available?

A: You can check if the Remote Management API is available at runtime using a helper method like this:

// Service details for binding
private static final String REMOTE_API_SERVICE_PACKAGE = '"com.amazon.ads.ema.sys";
private static final String REMOTE_API_SERVICE_CLASS = '"com.amazon.ads.ema.service.De\

public boolean isServiceAvailable(Context context) {
PackageManager pm = context.getPackageManager();
Intent dintent = new Intent();
intent.setClassName (REMOTE_API_SERVICE_PACKAGE, REMOTE_API_SERVICE_CLASS);

List<ResolveInfo> services = pm.queryIntentServices(intent, 0);

return !services.isEmpty();

This allows you to detect whether the device has the Remote Management API and gracefully fall back to your current
behavior if it's not available. This approach is much simpler than maintaining two separate builds and will work seamlessly
across different Fire OS versions.

