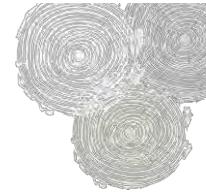
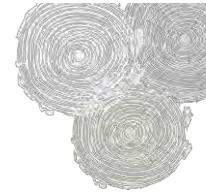


RPBC Trial Structure and Resource

Workshop, 9 May 2018, Rotorua
R.McConnachie


Why do we do experiments?


We have a question and we need an answer that has statistical robustness.

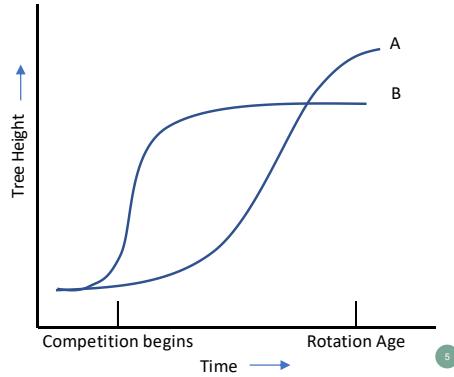
Statistical robustness requires good trial design.

1. Plot Type
2. Replication
3. Design Type
4. Siting

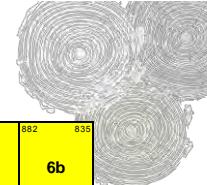
Plot Type

Considerations when deciding on a plot type:

- How long will the trial be used
- Will the trial need thinning
- Will destructive sampling be required
- What is the purpose of the trial
 - Breeding population
 - Species (hybrid)
 - Genetic gain
 - Demonstration
- What is the output required
 - Growth and yield over time
 - Ranking of individual genotypes



Blocks vs rows vs single tree plots


- **Blocks** are preferred when the goal is to measure yield of genetic entries per unit area / growth response over time.
- When there are large differences in the growth curves among the genetic material being tested.

eg. Genetic gain seedlots

5

Genetic Gain Trial Layout

881	882	895	896	909	910	923	924	937
GF19		G20		GF19		G20		
880	883	894	897	908	911	922	925	936
Stiffness		G24		Stiffness		G24		
879	884	893	898	907	912	921	926	935
Density		G29		Density		G29		
878	885	892	899	906	913	920	927	934
G29		Density		G29		Density		
877	886	891	900	905	914	919	928	933
G24		Stiffness		G24		Stiffness		
876	887	890	901	904	915	918	929	932
G20		GF19		G20		GF19		
875	888	889	902	903	916	917	930	931

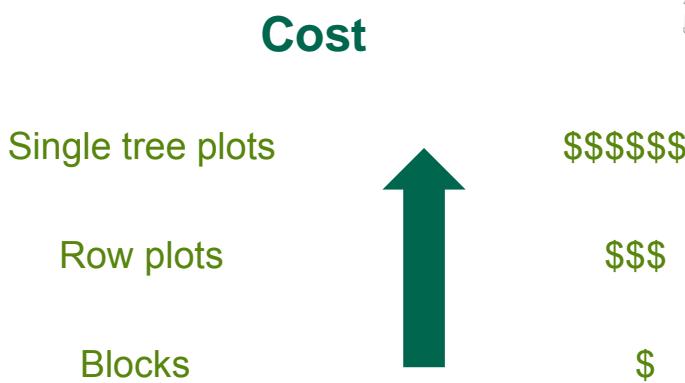
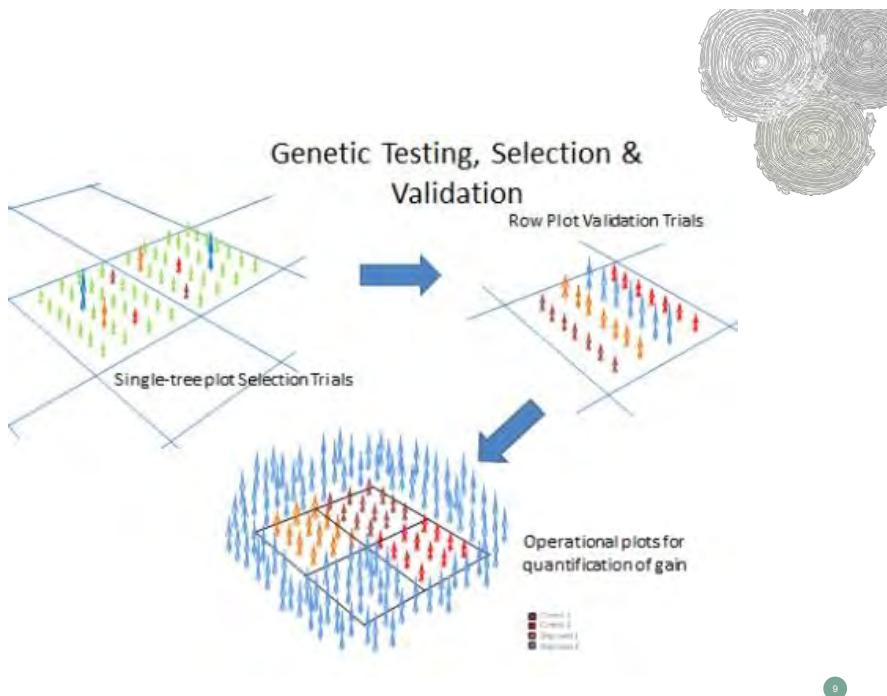
Rep 1	881	882	835
Rep 2	6a	6b	
Rep 3			
Rep 4	880	883	894

10 trees x 3.1m

TREE POSITIONS										X	
X	10	11	30	31	50	51	70	71	90	91	X
9	12	29	32	49	52	69	72	89	92		
8	13	28	33	48	53	68	73	88	93		
7	14	27	34	47	54	67	74	87	94		
6	15	26	35	46	55	66	75	86	95		
5	16	25	36	45	56	65	76	85	96		
4	17	24	37	44	57	64	77	84	97		
3	18	23	38	43	58	63	78	83	98		
2	19	22	39	42	59	62	79	82	99		
1	20	21	40	41	60	61	80	81	100		

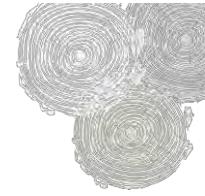
6

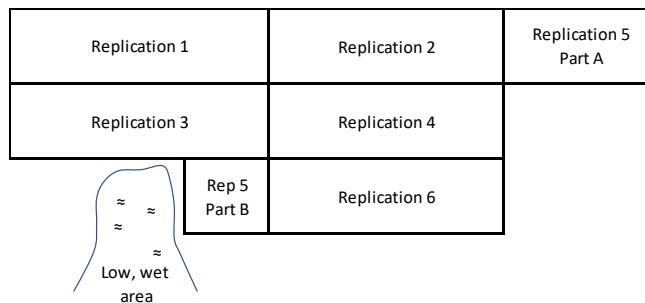
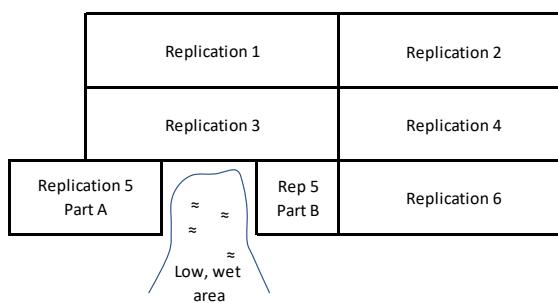
- **Row plots** are similarly **unsuitable** when there are large differences in the growth curves among the genetic material being tested.
- Suitable for demonstration or short term evaluation
- Arrangement of row plots in each replication extend along the elevational gradient

7

- **Single tree plots** are the most efficient type of plot when there are many treatments and early rankings are the output.
- Increased precision on very non-uniform sites.
- Require accurate labelling in the nursery and mapping in the field.
- The effect of missing trees at measurement can be managed by spatial analysis


8



However, the long term cost is greater for rows and blocks and the outcome is less

- Fewer genotypes can be tested.
- Interactions within site are greater.

Replication

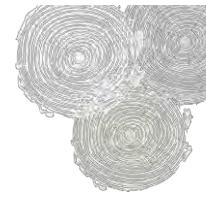
- To provide an estimate of experimental error. When there is no method of estimating experimental error, there is no way to determine whether observed differences indicate real differences or are due to inherent variability.
- To reduce the standard deviation of the treatment mean.
- More replication = more precision = more cost
- Trial size is a combination of the number of treatments, plot type and the number of replications.
- Minimise variation within replication.

12

More replication per site or more sites

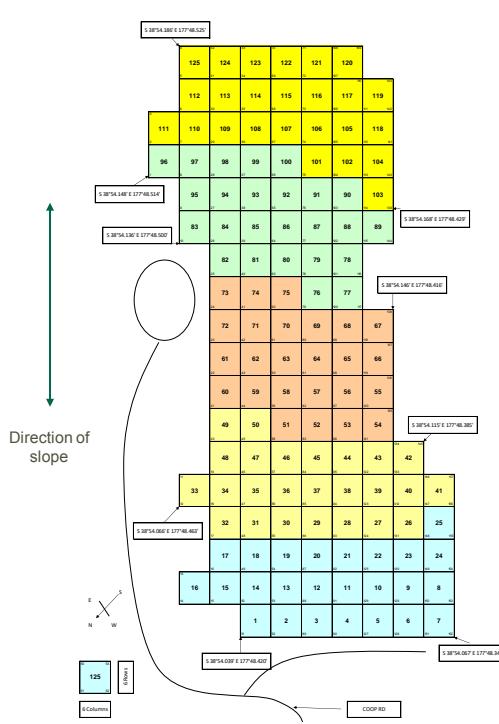
GxE

Trials are planted to estimate genetic and **environmental effects** on genotype performance.


13

Design Type

To retain a level of precision and limit trial size requires a reduction in the number of treatments or efficient trial design.


14

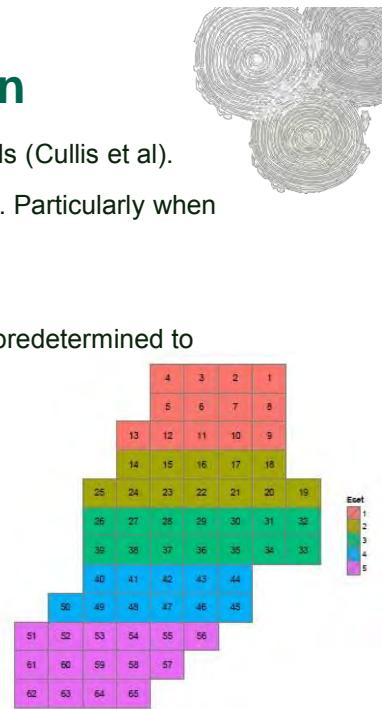
Incomplete Block Design

- This experimental design is very common in forestry when there is a large number of genetic entries.
- The complete block is subdivided into incomplete blocks.
- All treatments occur randomly within each block, a group of blocks makes up a replication.
- Treatments do not occur together in the same block across replications.
- The blocks are not assigned randomly.

15

Incomplete Block Design

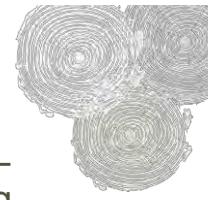
- 180 treatments
- 5 incomplete blocks
- 125 blocks of 36 trees
- 25 replications
- 5 blocks per replication


16

Optimal Design

- Used for trials established 2013 onwards (Cullis et al).
- Efficient use of small numbers of plants. Particularly when using ramets per clone.
- Treatments repeated across Esets.
- Location of treatments within blocks is predetermined to control placement of related genotypes.

	Eset 1	Eset2	Eset3	Eset 4	Eset5
Eset1	48	47	48	46	48
Eset2	47	47	47	45	47
Eset3	48	47	48	46	48
Eset4	46	45	46	47	47
Eset5	48	47	48	47	49


Diagonal elements are number of families per Eset, off diagonals are number of common families between Esets.

Sparse Multi Environment Trial (MET) Design

- Increase the number of sites and treatments, decrease the replication of treatments within each site
- Not all treatments are represented at every site.
- Design is compiled in 2 stages:
 - Initially allocate treatments across sites
 - Allocate treatments to plots within sites
 Rows and Columns eg. 1-6, A-F
- Maintain a high level of connectivity between sites.

Choosing Test Sites

Forest sites are highly heterogeneous – finding a truly uniform site is like seeking the holy grail.

Some of the challenges

- Uniformity
- Access
- Aspect, altitude
- Slash, Weed problems
- Site Preparation
- Protection – wind, animals, disease

19

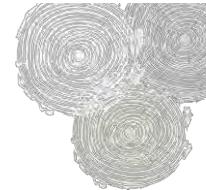
Site Preparation

Uniformity

Access

Slash

20


Capturing microsite variation

- Mapping plot layout prior preparing the trial design to assist with blocking


21

Maintenance

- Weed control – promote optimal growth, improve access during assessments
- Timely and thorough removal of regen – no competition, no confusion with plot trees
- Identify trial boundaries to avoid 'mishaps' during silvicultural operations
- Protection from pests and disease (unless this is a measurement trait)

22

Trial types and objectives

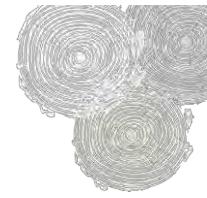
Trial Type	Ha	Objective
Main Population	4	Generate next breeding cycle
Production Population	4	Test (backward) selected orchard parents across different site types, and improve BVs of the Production Population parents
Cloned Elites	4	Generate candidates for the Production Population from tested clones
Dothistroma Resistance	4	Provide GF+ values for Dothistroma and a validation population for the Genomics project
Genetic Gain	2.5	Demonstrate long term gain and performance of leading edge and production population genotypes
Conservation Archive	2	Retain clones of a wider group of genotypes

23

Evolution of Trial Design

Incomplete Block Design	
Plant Type	Seedling
No. Treatments	100-150 families
Replication	30 trees per family
No. Blocks	100-125 blocks
No. Sites	3
Trial area	4.0ha

→ Past


Optimal/ Sparse MET Design	
Plant Type	Clone
No. Treatments	~ 750 clones
Replication	1-5 cuttings per clone
No. Blocks	65
No. Sites	6
Trial area	2.0ha

→ Present

Genomics

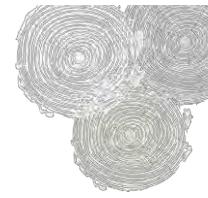
→ Future

Data collection and Analysis

The mating design, trial design and implementation are the main components in a genetic programme.

However the value of the tests depends on precise data collection and analysis

25

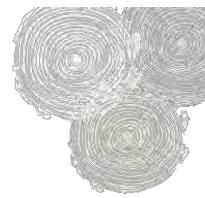


Database

Genetic fields and design factors

Expt	Eg.BC65_1
Plantdate	Year of establishment
Tid	Unique number for the experimental unit
Tree	Used as link to pedigree, clones have the same number
Eset	Blocking structure, usually in the range 1-10
Pset	No. of blocks, 1-100
Prow	Row position, 1-6
Pcol	Column position, A-F
Tpos	Boustrophedon tree position within the block, 1-36
Family	Unique to either a mother and father, or mother in open-pollination
Fcln	Female clone
Mcln	Male clone

26


RPBC trial resource

The trials are the engine room of the breeding programme

27

Trial Type	Establishment year	Nthld	BOP/Coromandel	CNI	East Coast	Hawkes Bay	Wairarapa	Nelson/Marl	Canterbury	Otago Coast	Southland	NSW	Tasmania
Main Population	2008	•		•	•			•			•	•••	
	2009	•	•	•				•				•••	
Genetic Gain	2011							•		•			
	2012	•		•				•					
	2013				•		•		•	•			
	2014												
	2015			•	••								
	2016	•				•							
Production Population	2011										•••		
	2012	•	•		•								
	2013		•	••			•						
	2014					•		•					
	2015					•			•				
	2016									•			
Cloned Elites	2013	•	•	••		•		•					
	2014	•		••				•					
	2015			•	•						•		
	2016	•				•				•		••	••
	2017		•				•				••		
Dothistroma	2014			•••									
	2015			•••									

28

Good Trials

Good Data

Good Genetic Gain