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The Trust Gap Between In-Silico Promise and R&D Reality

Generative Al

e

&

In silico
antibody &
antigen design

~

J

Trust Gap

R&D Costs

4 N

>$100M &
>10 years to
FDA approval

\_ J

Is Al the right tool for my problem?e

Which model(s) should | use?

How do | trust the model output(s)e

"'Wouters, O. et al., JAMA (2020)
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The Trust Gap Between In-Silico Promise and R&D Reality

Generative Al

e

&

In silico
anfibody &
antigen design

~

J

Trust Gap

=1le Engine

e

&

Integrated
structural and
functional
validatfion

2N

R&D Costs

4 N

>$100M &
>10 years to
FDA approval

\_ J
A

J

"'Wouters, O. et al., JAMA (2020)
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Antibody Discovery to Development Candidate in as Litlle as 7 Months

2024 2025 2026
QI Q2 Q3 Q4 QI Q2 Q3 Q4 Q1 Q2 Q3 Q4
IBIO-600
myostatin
antibody
IBIO-610
first-in-class
Activin E
antibody

B Hit generation B Lead identification B INDenabling YK IND/IND equivalent fiing




IBIO-600: Long-Acting Myostatin Antibody

Fat Mass Decrease! / Lean Mass Increase! Epitope Mapping

Single 5 mg/kg Dose in NHPs Single 5 mg/kg Dose in NHPs

10 15

o
-
o

1

=N

o
(3,

(%, from baseline)
(%, from baseline)

Change in lean mass
o

Change in fat mass

N
(=)

4 8 12 4 8 12
Weeks post dose Weeks post dose

NHP Half-Life Human Half-Life y Predicted iBio-600

Dose (measured) (predicted)?3 Myostatin Complex

. Experimental
Electron Density Map

5 mg/kg, I.V. 74-147 days

'Region of interest (ROI) DEXA focused on gluteal and thigh region, 2Nakamura, G. et al. Biol. Pharm. Bull. (2020), SHaraya, K. & Tachibana, T. BioDrugs (2023)
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IBIO-610: Potential First-in-Class Activin E Antibody
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Dose

10 mg/kg, I.V.

Study Design

IBIO-610 Two weeks of Semaglutide
Initiation injections followed by
IBIO-610 maintenance
dosing starting on day 11

—— Sema=>PBS
—o— Sema=>IBIO-610

10 15 20 25 30 35

* p<0.05 compared to Sema=>PBS

Day of Treatment ** p<0.005 compared to PBS

NHP Half-Life
(measured)

Human Half-Life
(predicted)! 2

33.2 days 47-100 days

Epitope mapping
completed; not shown
for IP protection

'Nakamura, G. et al. Biol. Pharm. Bull. (2020), 2Haraya, K. & Tachibana, T. BioDrugs (2023)



End-to-End Antibody Discovery Platform Accelerates Path to IND

1 2 3
Engineered Human StableHu™
Epitope Antibody Anﬁ.bo.dy
Steering* Library Optimizer

Al-engineered Naive antibody Whole molecule
antigens steer library in clinically optimization with
discovery to validated mammalian display
intended epitopes framework platform

On-epitope,
Developable
Clinical Candidate

*U.S. Patent No. 11,545,238 (issued January 3, 2023)
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End-to-End Antibody Discovery Platform Accelerates Path to IND

1

Engineered
Epitope
Steering*

Al-engineered
antigens steer
discovery to
intended epitopes

On-epitope,
Developable
Clinical Candidate

*U.S. Patent No. 11,545,238 (issued January 3, 2023)




Engineered Epitopes Enable Rapid Discovery of On-Epitope Antibodies

Naive in vitro or in vivo Focus library with Efficient discovery of
antibody library engineered epitopes epitope-specific antibodies
L epitope J
~ %
ﬁk epitope \7 N
o e
\ 2 o
% | /é - )

de novo scaffold



Engineered Epitopes Are Tailor-Made Solutions for Your Target of Interest

Target of Interest Generative Al Use Cases

Epitopes of Interest

Design scaffold supporting
native epitope structure

Protein Complexes

Stabilize junctional and/or
discontinuous epitopes

Membrane Proteins

Solubilize transmembrane
domains




Antigen Designs are Optimized for Antibody Drug Discovery

-

Water Structural
Solubility Stability
B Fpitope ¢ D5 , Predicted

() % Flexibility
Scaffold =

\_ v
4 )

Scaffold SR> S RV Low Scaffold
Minimization AKX Immunogenicity
KX C
B cEpitope 1 Predicted
N-- % Immunogenicity’
Scaffold 0000 - -

k ‘XXXXIC /

@J 'Ponomarenko , J. et al. BMC Bioinformatics (2008) 11







Case Study #1: CCR8

CCRS8 is an Emerging Immuno-Oncology Target Epitope Targeted for Treg Depletion

Recruitment and Expansion
of Treg cell

= FOXP3+ Tre
cc1 ® ° F
[S)
® 7 crs

IL-10
TGF-B

A X
© Tumorcell \'\ VEGF
-
d‘{.‘,-‘ NE

Immune suppressive
effect

Tumor site

CCRS8is upregulated on regulatory T cells (Tregs) within the
tfumor microenvironment (TME), where it promotes Treg
recruitment, expansion, and immunosuppression

@J Kim et al., Biomedicines 11, 11 (2023), Wen et al., Trends in Immunology 46, 2 (2025) 13



NMR Structure Validates Engineered Epitope Design

Input Target
CCRS8

Al Protein Design

Discontinuous Epitope
Scaffold Design

Engineered Epitope

Experimental NMR structure (transparent overlay)*
aligns well with generative Al design

Backbone RMSD = 1.6 A for
epitope residues

* Unpublished collaboration with Arizona State University (2021)



Case Study #2: GIPR

GIPR is a Target of Weight Loss Drug Challenge: Design Soluble GIPR that
Zepbound?® (Tirzepatide) Specifically Binds GIP and not GLP-1

a-cell

GIPR
Tirzepatide

@GP @ GLP-1 @ GCG O Common @ Aib O CEX

GIP 1 5 10 15 20 25 30 35 40
S 0 0Pe000000000000000000 L0000 D@
GLP-1
O REWEUEMESEEEENNIEEONYOVCEE,
Ca20
TZP
o \ et ..@@@@@@@@@.“@..0.‘@@@@@@@.@@@@@@@@@@@*NHz
GLP1R[ S, | Glucagon
Secretion
GIPR and GLP-1R are structural homologs whose
. natural ligands GIP and GLP-1, respectively,
Insulin share high sequence identity at the N-terminus

Secretion

@J Campbell et al., Cell Metabolism 35, 9 (2023), Véniant et al., Nature Metabolism 6 (2024) 15



GIPR is Solubilized by Reengineering the Transmembrane Domain

Input Target Generative Al Soluble GPCR

GIPR Solubilization of
tfransmembrane domain

v' Native-like
extracellular region

v Water solubility

v’ High Stability

/
P,
x

- ¢ Ay h
A w.-/~ S5
&Q = ﬁ ﬁ
e D
TR
&k S

v:;;L ) v High Expression

v PTMs by expression
in human cells




Extracellular Domain
(ECD) Binding to GIP

frr———

LB B i

-300 -250 -200 -150 -100 50 o 50 100 150 200 250 300
jl

1 0.333 0.

0.037 0.012

-

&

Transmembrane Domain
(TMD) Binding to GIP

-300  -250 -200 150 100 -S5O ] 50 100 150 200 250 300

(s}
il 0.333 0.111 0.037 0.012

ECD + TMD
Binding to GIP

Ko = 74 nM*

*Kp calculated from avidity binding kinetics 17



Soluble GIPR Binding is Specific to its Natural Ligand and Therapeutic Drugs

Avidity Ligand Binding Kinetics

GIP GLP-1T
Natural Ligand Negative Control
Kp = NA
Zepbound® Retatrutide
Dual Agonist Therapeutic Drug Triple agonist
Ko = 46 nM ] - Kp= 22nM

Time (s)



Negative Stain Electron Microscopy Supporis Soluble Transmembrane Design;_':-\;:

Negative Stain Electron Microscopy

Soluble GIPR expressed
as Fc fusion

2D class averages agree
with soluble
transmembrane design

Flexibility observed at the
Fc hinge region



Case Study #3: GPR75

GPR75 is a Genetically Validated Obesity Target

BMI-associated genotypes

M

@1'.,:' 1 @MC4R
D
@ CALCR
& "

e ® - 2
St G iie
o 7 @i‘&“a‘-;’!‘.’:{;:—g\v?"‘-—‘x-ﬁi
¥ GPr1SI
GIPR

«— Per-allele effect size —»
in kg/m? of BMI

@ Burden of rare coding genotypes
® Fine-mapped common genotypes

VU i 10

v

Alternative allele frequehcy

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E Underweight

(N=228)
. Healthy weight
(18.5to < 25 kg/m?)
D Overweight
(25 to < 30 kg/im?)
Non-carriers .
(N =645,074) | Obesity

(30 to < 40 kgim?)

. Severe obesity
( = 40 kgim?)

Genetic deletion Weight gain
of Gpr75 in mice
'Q\ 14 weeks [
fwr high-fat diet ;Z-/ZS% Q

challenge

[
ol

Akbari et al.,

Challenges

«  No experimental
structures available at
the time of this study

« 20-HETE binds the
fransmemlbrane
domain

« CCLS binds
extracellularly, but the
binding site is unknown

Science 373,73 (2021), Han et al., Int J Mol Sci 26, 9 (2025)
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Soluble GPCR Designed from Sequence Alone

Input Target Generative Al Soluble GPCR

GPR75 (AlphaFold) Solubilization of
fransmembrane domain

Soluble GPCR
designs generated
from sequence
information alone

N-terminus N-terminus

_._.

Removal of ~250
residue infracellular
domain

membrane

12 designs expressed
and purified to test
for binding to CCLS

intracellular
domain

@-’ 21



Solubilized GPR75 Binds CCL5 and Commercial Antibody

ELISA Binding Negative Stain EM
0.8 CCL5 Anti-GPR75 -©- Control
- 2.5 -0~ Design 1
g 2.0 -o- Design 3
5 087 Design 5
% 1.57 Design 6
o 0.4+ Secion 7
8 1.0 -©- Design
5 Design 8
2 0.2- .
Q 0.5 -©- Design 9
< -©- Design 10
e : o Design 11
0.1 1 10 100 1000 10000 0.001  0.01 0.1 1 10 100 esfgr‘
Soluble GPR75 Design (nM) Anti-GPR75 (nM) -©- Design 12

6}) 22



Antibody Discovery

Amylin Receptor




Amylin Receptor Agonism

A Complementary Pathway to GLP-1-Based Obesity Treatments

Why Target Amylin?

* Validated metabolic hormone that
promotes satiety and slows gastric
emptying

« Clinical studies with amylin analogs
confirm efficacy in weight loss, but
peptide-based approaches may be
sub-optimal (dosing, tolerability,
manufacturability)

« Antibody therapeutics could provide a
differentiated profile, with potential for
longer duration of action, greater
receptor specificity, and reduced side
effects

Calcitonin Amylin Amylin Amylin
Receptor Receptor 1 Receptor 2 Receptor 3
SARA

Selective Amylin Receptor Agonists (SARA) may more precisely target obesity
intervention than Dual Amylin and Calcitonin Receptor Agonists (DACRA)

Aronne et al. 92, 8 J Clin Endo Metab (2007), Ghosh et al., 1871, 1 Biochim Biophys Acta (2023), Gingell et al., 2, 16012 Cell Discov (2016)
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Peptide Drugs are Efficacious but Require Frequent Dosing

Weight Loss on FDA Approved Pramlintide Weight Loss on Long-Acting Cagrilintide

gvaabe  TID Regimen TLOCE 0-¢
1 Double-blind study Single-blind extension o
0
1 B . -2 _
e X X
g o = =
3 -3 5 -4 Ny
;>‘ aq—) .G—)
i s s
.E 5 —8 —6_ -8
= 0 0
c -6 * f oo (o
5 8 :* ool ==
% 7 & -84 &
H 1 C =
c -8 + © 3]
© i o il =
2 [, O
9 -10-
104
" 4 ' 8 2 12 -12 T T T 1 T T T 1
:;Z‘eb:;'o'sg:jem 38 17 Tis: o) 17 17 27 0 2 4 6 8 10 14 18 22 26
120pg TID 38 38 25 25 25 29 .
WorgTD 42 f 2 n beraf Time (weeks)
-O- Placebo —&— 120 pg Pramlintide  --/x- 240 pg Pramlintide - @ 360 pg Pramlintide Cagrilintide 0-3 mg —@— Cagrilintide 0-6 mg —@— Cagrilintide 1.2 mg
—@—Cagrilintide 2.4 mg -@— Cagrilintide 4-5mg -@- Liraglutide 3:0 mg
Limitation — requires multiple doses per day Limitation — still requires weekly dosing

@J Smith et al., 31, 9 Diabetes Care (2008), Lau et al., 398, 10317 Lancelot (2021) 25



Goal: Improve Therapeutic Specificity and Longevity with Antibody Fusion

SARA

Combinations specific
to amylin receptors
1,2,and 3

Calcitonin
DACRA Receptor

(CTR)

Combinations of amylin
receptors 1, 2, and 3
and other off-target
proteins associated
with RAMP

Calcitonin receptor
and amylin receptors
1,2, and 3

Synthetic Amylin +
Antibody Fusion

\\ ¢/

26



Full Spectrum of Epitopes Designed for Amylin Receptor

Input Target

Amylin Receptor

Generative Al

Epitope Designs

Individual Epitopes

Soluble CTR

27



CTR Solubilization Validated by Salmon Calcitonin Binding

ECD + TMD
Binding to Salmon Calcitonin

Transmembrane Domain (TMD)

Extracellular Domain (ECD)
Binding to Salmon Calcitonin

Binding to Salmon Calcitonin

Ko = 20 nM*

Ko = 500 nM*

R R e e e e e e e
50 100 150 200 250 300

0 TTTTTT
S0 0

R RN EAREN
300 250 -200 -150 -100
Time (s)

EBANREERS R RS Ean sy uanny ]
50 100 150 200 250 300

Ty ""I"""’T'“'\.""I‘—ﬁT‘I“'l"I R R RS NERRN RaRa R
0 50 100 150 200 250 300 -300 -250 -200 -150 -100 -50 o
Time (s}
*K, calculated from avidity binding kinetics 28
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Amylin Junctional Epitope Design Retains Anti-CTR Antibody Binding

Absorbance (450 nm)

CTR ECD

2.0 Anti-CTR ELISA

1.5

1.0

0.5

0.0 T T T 1 1

0.001 0.01 0.1 1 10 100
Ab (nM)
- |sotype Ab

-# anti-CTR Ab

Absorbance (450 nm)

RAMP

2.0 Anti-CTR ELISA
1.5
1.0
0.5
—8%—8—8 & @8 8
0.0 I—II=F——I-I—‘I;.—._I
0.001 0.01 0.1 1 10 100
Ab (nM)
& |sotype Ab

-# anti-CTR Ab

Absorbance (450 nm)

Amylin ECD

2.0 Anti-CTR ELISA
1.5
1.0
0.5
0.0 T T T 1
0.001 0.01 0.1 1 10 100
Ab (nM)
- |sotype Ab

-# anti-CTR Ab
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Epitope Designs are used for In Vivo and In Vitro Discovery

Epitope Designs In Vivo/In Vitro Antibody Discovery
Selection

Individual Epitopes

Soluble CTR Immunizations

4 months

Phage panning

5 % 1 month
\) ¥




Nanoparticle Display System Enhances Immune Response for Immunizations

Engineered Epitope Immunization Nanoparticle Immunization
Weak B cell activation Strong B cell activation




0000

Cell Injection

Measure Serum Titers
Engineered Epitope Injection
Full-Length Antigen Injection \

O O O
A4 A4 A4
O O O
A4 A4 V

—(> e o o o o > @
—( > e o o o o >0
' |
3- Day 1 3 Day 21 3. Day 49
g 27 g 27 g 27
[a] [=] [a]
(o] (o] (o]
14 1 14
0 04 0-
I 1 I 1 I I 1 1 I 1 I I 1 1 I 1 I I 1
102 10°  10* 105 10° 107 10° 102 10° 10* 105 10° 107 108 102 10°  10* 105 10° 107 10°
Dilution Factor Dilution Factor Dilution Factor
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© Measure Serum Titers

@ Engineered Epitope Injection Y $ g™
@ Full-Length Antigen Injection on ) @\‘)
O CellInjection
—(> e 0 0 0 0 o o >0
—( > e 0 o o 0 o 0 0 o >0
9 Day 1 Mouse 1 . Day 21 Mouse 1 3_' Day 49 Mouse 1
Mouse 2 Mouse 2 Mouse 2
o oy, 0 o oy, 0 o ‘~’Qﬂ%w\
14 < 14 2 ~\§ 14 «@&
|
04 04 0+
I 1 I I 1 1 1 1 I 1 1 1 1 1 I 1 I I 1
102 10° 10* 105 10° 107 10 102 10® 10* 105 10° 107 108 102 10%° 10* 105 10° 107 108
Dilution Factor Dilution Factor Dilution Factor
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hage Panning Against Engineered Epitopes Translates to Cell Binder Hits

AMR-02-E11 VHH-FC

AMA-02-GO04 scFv-FC

AMR-02-FO7 VHH-Fe

AMR-02-E01 scFu-Fe

® amyind (5.7 4 EC50) ———— | 12000] @ a3 55 ecen ——py 1 & aminaieanmec —— o] @ amying 71 omecso e
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. 80001 / 000 /
/ . ) - L .
CR X eo00{ X w0 % gonal
H B
£ o]
H 4 H J
2000 2000 { 4 20 P4 e
d L e
i s =——au 1 ——a % of =i - ——a— &8 i s = = un ==
01 10 100 100 0l 10 100 1000 a1 10 0.0 1000 01 10 0 1000
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£ S
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.
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AMR-04-B11 scFv-Fe

Amylin Receptor Cell-Only Strategies

(No Specific Binders Founq)

AMR.D4-B08 seFv-Fe

AMR-04-C09 seFv-F

AMR-04-A12 seFv-Fe

® Amylin3 Receptor Cell Binding

B Negative Control Cell Binding

1000

8000

8000

1000

&  — i__l =

100
Concentration (M)

™
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Specificity and Cross-Reactivity in a Single Experiment

Species Cross-Reactive Designs 4-Dimensional Mammalian Display Sorting

Human Amylin

Receptor 1 ﬁ Simultaneous Amylin
(AMYR1) Receptor Specificity and
— i Species Cross-Reactivity
", L
Human Amylin ‘o " - \\\
Receptor 3 14 \\ —e5
(AMYR3) | X )
2, o ©

o)) -g oD
Rat Amylin § : % o,
Receptor 3 o § |
(AMYR3) g 5

< [24

g 1

5

Human Calcitonin
Receptor
(CTR)

10° 104
Human AMY3R Binding

10 104
Human CTR Binding
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Cell Binding and Agonism is Exquisitely Selective for Amylin Receptor

Cell Binding Agonism Assay

8x10°-
Antibody Peptide Fusion Cagrilintide
6x10°-
T @ Caicitonin Receptor Cells
Em B Amylin Receptor 1 Cells
§ 4x10%7 # Amylin Receptor 3 Cells 10000+
o A © Negative Control Cells &
2000 &
2x10% & T 8000+ —
1 10 100 3 s _, 60004 _
Concentration (nM) 14 z £
1000+ - 4000+ '
2000
0' T T T
0.1 1 10 100 1000 01 1 10 100 1000
Concentration (nM) Concentration (nM)

@ Calcitonin Receptor Cells

# Amylin Receptor 3 Cells

Calcitonin Amylin Amylin
Receptor Receptor 1 Receptor 3
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We Love Hard Problems

Have a problem you think could be addressed with GPCR solubilization?

We are open to collaboration! alex.taguchi@ibioinc.com
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