JDD AGENCY

JDD Agency Guide to Legacy
Migration

How to Decouple, Modernize, and Scale Before
the Year Ends.

A JDD Agency Strategic Insight



The Cost of Doing Nothing

In 2026, legacy isn't just "old code" - it is an active
barrier to Al integration.
If your data is locked in on-prem silos, you cannot
leverage the LLMs and automation tools that your

competitors are already using.

By 2026, technical debt will consume 60% of IT
resources in companies that haven't modernized.

The Problem

Legacy systems operate as a
"black box." A single change in
one module (e.g., updating a
pricing table) risks breaking the
entire application (e.g., the
checkout flow). This fear of
breaking the system leads to
"Deployment Paralysis," where
updates happen once a quarter
instead of once a day.

The Strategic Goal.

@ The Solution

We break the monolith into
independent, self-contained
building blocks (Microservices or

Packaged Business Capabilities).

These blocks communicate via
APls.

Why it wins: Replace the
outdated block with a modern
one.

@® The ROI

Scalability: Scale only the
features getting heavy traffic
(e.g., Black Friday search
volume), not the whole server.

Resilience: If one service fails,
the rest of the application stays
online.

Speed: Deploy new features in
hours, not months.



The JDD Migration Strategy

Our 6 R’s Process.

Retire: Turn off what isn't used.
(Low Effort / High Savings)

Retain: Keep what works and is secure.
(Low Effort / Low Risk)

Rehost: "Lift and Shift" to the cloud.
(Medium Effort / Quick Wins)

Replatform: Tinker to optimize for the cloud. (Medium
Effort / Better Performance)

Refactor: Rewrite code for microservices. (High Effort /
Maximum Agility)

Repurchase: Move to SaaS.
(Variable Effort / Modern Standard)

We don't rewrite everything at once.

We recommend wrapping your old system in a new APl layer, gradually
replacing functionality piece by piece until the old system can be safely
turned off.



The Toolkit

Operational Readiness Checklist.

Have we mapped all dependencies?

Is our data "clean" enough to move?

Do we have a fallback plan if the migration

stalls?

Is the team trained on the new tech stack?

Pitfalls to watch.

Data Gravity:
Moving the app is easy; moving petabytes of data is hard. Plan
for latency.

Scope Creep:
Fix the platform first, add new features second.

Stop patching. Start evolving.



