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Abstract 
Artificial Intelligence (AI) infrastructure faces two compounding crises. Compute payload – the 
unsustainable energy and capital costs of training and inference – threatens to outpace grid 
capacity and concentrate capability among a handful of organizations. Data chaos – the 80% of 
project effort consumed by preparation, conversion, and preprocessing – strangles development 
velocity and locks individual datasets to single model architectures. Current approaches treat 
these as separate problems, managing each with incremental advancements in optimization, 
increasing complexity in the overall AI tooling ecosystem. The approach presented here views 
data and computation as two expressions of single architecture, where a unified primitive is 
missing. Early indicators result in significant optimization, lifting current approaches and 
reducing complexity throughout the AI ecosystem (i.e. infrastructure). 

This paper presents ServaStack: a universal data format (.serva) paired with a universal AI 
compute engine (Chimera). The .serva format achieves lossless compression by encoding 
information using laser holography principles, while Chimera converts compute operations into a 
representational space where computation occurs directly without decompression. For AI, the 
result is automatic data preprocessing by converting into .serva. The Chimera engine enables 
any existing model to operate on .serva data without retraining, preserving infrastructure 
investments while revamping their efficiency. 

Internal benchmarks demonstrate 30-374× energy efficiency improvements (96-99% energy 
reduction), ~4× lossless storage compression, and 34× compute payload reduction without loss 
of accuracy when compared to RNN, CNN, and MLP models trained on original FashionMNIST 
and MNIST dataset files. At hyperscale one billion daily iterations, these gains translate cost 
savings of $4.85M per petabyte in per training. The impact of this technology proposes more 
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significance than the efficiency; that when any data flows to any model on any hardware, the 
entire AI development paradigm shifts. The bottleneck moves from infrastructure to imagination. 

 

 

I. Introduction 
Any data to any model on any hardware. This is what Servamind has built. 

WE NEED A HOOK, SOMETHING INTERESTING… WHY READ THIS? A narrative of some 
sort… a little fluff.. “in the land before times” “Three Rings for the Elven-kings under the sky, 
Nine for Mortal Men doomed to die, Seven for Dwarf-lords in their halls of stone, One for the 
Dark Lord on his dark throne".. Leading with numbers in the following paragraph is so boring! 
People want to feel good about the money they make themselves under the guise of some 
cause.  

AI infrastructure spending reached $135 billion in 2024 and is projected to surpass $200 billion 
by 2028 and the figure is accelerating [16]. Yet AI remains trapped: training accessible only to 
hyperscalers, impractical at the edge, unsustainable at scale. The cardinal constraint is 
feasibility, which relies on  infrastructure, encouraging new forms of machine intelligence to 
emerge. 

Servamind's purpose is to allow AI to flourish in a meaningful way to all of society. To achieve 
this we have built Servastack, a combination of our unique encoder (Serva Encoder) and an AI 
wrapper (Chimera) to solve what we think are two difficult problems in the AI development 
pipeline: compute payload and data chaos. Servastack is a universal data format paired with a 
universal AI compute engine, allowing data and computation to flow across any ecosystem into 
a unified application. This property of universality is paired with an exploit on the current 
compute paradigm for maximum efficiency. This brings down the cost of AI creation and use by 
orders of magnitude [https://arxiv.org/abs/2403.17887]. Rather than copying and optimizing 
current approaches, the focus of AI advancement can now become new modes of learning, new 
user interfaces, and new insights into thinking machines. 

The Two Primary Problems 

AI cost is dominated by two challenges: data chaos and compute payload. In plain terms, AI is 
expensive and data is difficult. Together, these account for the vast majority of project resources. 
Data preparation alone consumes roughly 80% of total effort and budget, while compute 
infrastructure represents 47-67% of total AI development costs for organizations building from 
scratch [8,18]. 

Compute Payload is the visible crisis. The International Energy Agency projects that global 
datacenter electricity consumption will more than double by 2030, reaching approximately 945 
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TWh annually, equivalent to Japan's entire electricity consumption [1]. AI-accelerated servers 
are growing at 30% annually, four times faster than total electricity supply growth, and 20% of 
planned datacenter projects already face delays due to grid bottlenecks. Grid operators are 
already hitting capacity limits: in Virginia, Dominion Energy faces a seven-year backlog for new 
datacenter connections; Ireland imposed a moratorium on Dublin datacenter grid connections 
from 2021 to 2025 due to electricity system strain [19, 20]. The U.S. Department of Energy 
warns that without efficiency breakthroughs, AI's power demands could require dozens of new 
power plants within the decade [2]. 

The scale of investment often reflects the scale of demand. NVIDIA's datacenter revenue more 
than doubled from $15 billion in 2023 to over $47 billion in 2024 [3]. Microsoft committed $80 
billion to AI datacenters in 2025 [4]. Epoch AI's analysis shows compute used in frontier training 
runs growing 4-5× per year since 2010, far exceeding the chip miniaturization efficiency gains 
chip Moore's Law [5]. The Stanford AI Index reported training costs for state-of-the-art models 
reaching $78 million (GPT-4) to $191 million (Gemini Ultra) [6]. Training GPT-3 emitted an 
estimated 552 metric tons of CO₂; GPT-4's training emissions are estimated at 10,000-15,000 
metric tons – roughly 20× higher [7]. 

ARK Invest, an asset management company, offers a counternarrative: AI training costs are 
declining approximately 75% annually through Wright's Law dynamics, hardware improvements 
reducing compute unit costs by 53% per year, compounded by algorithmic efficiencies 
contributing another 47% [22]. If costs decline accordingly, the argument goes, AI scales 
sustainably. 

This analysis, however, conflates efficiency with capability. Wright's Law measures the cost to 
reproduce yesterday's performance, not to achieve tomorrow's, not to increase AI efficacy (i.e. 
intelligence). Moreover, ARK's cost curves track per-unit compute while excluding the 
infrastructure buildout where costs are rising and resources are constrained: datacenter real 
estate prices increased 19% in 2024, supply chain shortages for generators, chillers, and 
transformers are inflating construction costs, and grid connection backlogs stretch to seven 
years in key markets-none of which follow Wright's Law dynamics [CITE]. The view that AI is 
scaling is myopic compared to the total supply chain growth needs of current AI’s trajectory. 

DeepMind's Chinchilla scaling laws reveal the deeper constraint in large language model (LLM) 
development. The relationship between compute and capability follows a power law [23]. 
Compute-optimal training requires scaling parameters and data together, with FLOPs scaling 
quadratically with model size (approximately 6ND for dense transformers) while capabilities 
improve along a much shallower curve. The implication is sobering: frontier capability does not 
get cheaper. Each incremental improvement in model performance demands disproportionately 
more compute. The goalpost moves faster than efficiency gains can follow. 

The consequences are threefold. Climate impact is mounting. Capability is concentrating-only a 
handful of organizations can afford frontier model training. Barriers to entry are rising; startups, 
researchers, and developing nations find themselves increasingly locked out of meaningful 
participation in AI advancement. The Chinchilla constraint compounds all three: every capability 
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improvement demands proportionally more data, more compute, and more energy. Yet, 
Chinchilla applies only to LLMs, the models that have dominated optimization efforts for the past 
several years. The next frontier in generative AI, simulation models, multi-modal systems, and 
multimedia reasoning generation, exhibits even steeper scaling requirements, with data 
volumes and compute demands that dwarf text-based training. Section V examines how 
Servamind's efficiency gains alter this calculus across modalities. 

AI in its current form is not scalable to the degree that its collateral costs should be overlooked. 

Data Chaos is the less visible crisis even though AI developers live it daily. 

The practical experience goes as follows: spend months determining how to prepare data and 
then quickly copy/paste a model architecture from a journal repository. Refit this model in a 
week. Then run inference for another week, before finally obtaining some results. Then after all 
of that, refactor everything for a new model and repeat the entire cycle. The actual AI is the 
easy part. The real job is all the data work. 

Industry analyses consistently estimate that 80% or more of any AI project's effort goes to data 
preparation, cleaning, and orchestration [8]. This reality is reflected in market behavior: models 
are frequently open-sourced while training data remains sacred, proprietary, high-priced IP. The 
value resides in the data, and the cost resides in preparing it. 

There is also a one-to-one lock-in between dataset and model. Data cannot simply be fetched 
from storage and passed to any AI. It must be specifically pre-processed for the downstream AI 
model architecture. Every time a new model is adopted, the data must be re-processed from 
scratch to produce model identifiable features. Aside from being inefficient, it is genuinely 
frustrating for practitioners who understand that the underlying information remains the same 
regardless of which model will consume it. Feature engineering is a human operation; 
eliminating it would allow AI models to do the bulk of the work. 

As data capture expands, the problem compounds. IDC projects global data creation will 
exceed 180 zettabytes by 2025, up from 64 zettabytes in 2020 [9]. Much of this growth comes 
from specialized domains, medical imaging, satellite telemetry, genomics, industrial sensors, 
producing formats poorly matched to mainstream architectures. Regulated industries like 
healthcare and finance face 20–35% higher AI implementation costs due to compliance 
requirements, specialized data handling, and domain adaptation needs [21]. The prevailing data 
constraints are format issues, quality issues, scale issues, and security issues.  

The data problem is accelerating, not slowing. 

Current Approaches 

Hardware approaches are largely abetted by miniaturization, making transistors smaller so more 
of them can fit on chip. Moore's Law, the observed rate of miniaturization, however, is lessening. 
Perhaps 10–15 years of conventional scaling remain before atomic limits impose quantum 
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effects [10]. Practical quantum computing at consumer scale is not expected until 2040 or 
beyond [11]. The hardware path alone will not solve the timeline we face.  

Software approaches seek efficiency through representation: 64-bit to 8-bit quantization, 
pruning, distillation, sparsity. Even aggressive techniques like Microsoft's BitNet, which reduces 
weights to ternary values {-1, 0, +1}, achieve 2-6× speedups and 55-82% energy reduction [24]. 
In an attempt to overcome data chaos, typical approaches are to orchestrate systems and 
layers to navigate the chaos. Some current approaches attempt data orchestration: Pandas 
DataFrames, PyTorch tensors, Hugging Face SafeTensors. ML-Ops platforms like MLflow, 
Weights & Biases, and Kubeflow coordinate infrastructure and track experiments.  

The AI ecosystem has also produced numerous data formats, each solving a narrow problem. 
Apache Arrow and Parquet optimize columnar analytics but assume tabular structure. TFRecord 
and SafeTensors serialize tensors for specific frameworks. ONNX provides model interchange 
but not data interchange and remains a conversion layer, not a native format.  

Current approaches represent steps in the right direction towards unifying the AI ecosystem’s 
tooling. Yet none are universal for all data to any model. Further, they do not address the root 
cause of binding feature information to compute payload. While these approaches deliver 
valuable gains, none deliver the order-of-magnitude improvements required to break scaling 
constraints, or ease the data-model lock-in. Each standard addresses one link in the pipeline 
while the fundamental fragmentation remains.  

The AI field moves too rapidly to design for specific configurations. It is futile for any team to 
keep pace with every variation. Too many data formats exist. Too many model architectures 
compete. Too many hardware targets fragment the landscape. Too many programming 
languages divide practitioners. Tooling is scattered, redundant, and confusing.  

Rather than spend so much time navigating the chaos we set out to solve the problem by 
simplifying all data preprocessing using a universal encoding producing a standard file format, a 
.serva file. 

How .serva Differs from Existing Standards 

The .serva format differs in kind, not degree. It is not a serialization format for a specific data 
type. It is not a conversion layer between frameworks. It is a universal encoding that transforms 
any input (e.g. images, text, audio, sensor streams, structured records, etc.) into a single 
representational space where all information is preserved and direct information extraction (i.e. 
computation) can occur. The question shifts from "how do I convert my data for this model" to 
"encode once, compute anywhere." 

Servamind Approach 

The root inefficiency cause is that data and computation have never been addressed together in 
a way that leverages the existing ecosystem. Our answer to these two compounding problems 
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is our Servastack, a universal data format (.serva) to eliminate data chaos and a universal AI 
compute engine (Chimera) that tackles the compute payload problem. These two solutions are 
independently needed in order to penetrate the existing ecosystem at various levels of the 
pipeline, where the two problems remain separate. When combined in a workflow, Servastack 
emerges as a unification paradigm that can begin to be leveraged for compounding efficiency 
gains.  

Servamind attacks both problems simultaneously through a unified system: 

●​ A universal data format (.serva) that eliminates data chaos created by Serva Encoder 
program 

●​ A universal compute engine (Chimera) that solves compute payload 
●​ Together (Servastack): 30-374× energy efficiency (96-99% cost reduction), ~4× lossless 

storage compression, and 34× compute payload reduction – without diminished 
accuracy  

●​ Data agnostic. Model agnostic. Hardware agnostic. 

 ☆ The insight most observers miss: they hear "compression" and think "efficiency." Efficiency is 
a consequence. Universality is the breakthrough. 

When any data can flow to any model, the entire AI development paradigm shifts so that any 
model can ingest any data. Bidirectional compatibility emerges. The data layer becomes 
decoupled from the model layer entirely. True multimodality becomes tractable – 
vision-language-action models in robotics have struggled not for algorithmic reasons, but 
because fitting heterogeneous data into one model presents an engineering nightmare. The 
data-model lock dissolves across all verticals. 

The market reality shaped the product. In the current AI ecosystem only hyperscalers can afford 
frontier training. The  efficiency gained through Servastack would democratize access. But 
adoption faces a barrier, since  organizations resist retraining models in which they have already 
heavily invested. Infrastructure overhaul appears more expensive than ongoing inefficiency. 

This constraint forced two requirements: 

1.​ More efficient computation  regardless of data type or source 
2.​ Compatibility with any stage of AI-training, pre-training, fine-tuning, inference  

What is most important to note: the Servamind solution does not contradict or compete with 
other approaches. It is universal. It is additive.  

☆ Servastack partners with and amplifies the efforts of all those pursuing ease and efficiency in 
AI. 
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II. The Origin 

Servamind began with a question about why AI fails to scale like biological intelligence. 

The culprit in neural networks is catastrophic forgetting, known as the fundamental limitation of 
backpropagation-based learning [CITE]. Alternative paradigms hit their own walls: reinforcement 
learning's sample inefficiency, knowledge graphs' combinatorial explosion, symbolic AI's 
brittleness [25-28]. No existing approach scales cleanly. The workarounds remain fragile, and 
the industry locks in technical debt with every deployment. When a neural network learns a new 
task, it updates its weights to optimize for that task at the expense of prior tasks. The model 
drifts away from previous knowledge, constantly forgetting what it once knew. This is not a bug 
in implementation; it is a structural consequence of how greedy-based learning operates [12]. 

Brains learn a bit differently. Biological neural systems do not usually catastrophically forget. A 
human who learns Spanish does not entirely lose their English for doing so, as would, for 
example, Siri’s AI. The brain has evolved to solve this problem. This recognition initiated a 
search for learning mechanisms closer to biological reality. 

Inspiration from Biological Systems 

That search led to the work of L. Andrew Coward, namely Recommendation Architecture, a 
theoretical framework for understanding higher cognition in terms of anatomy and physiology 
[13]. Years of study revealed several foundational insights that would reshape our approach to 
the problem. 

First: Information in biological systems is computed in three-dimensional physical space. The 
spatial arrangement of neurons matters. This makes von Neumann architectures, where 
memory and processing are fundamentally separated, a poor substrate for brain-like 
computation. Every mainstream computer inherits this bottleneck. 

Second: The units of information in biological systems are maximally combinatorial. They are 
designed to combine and build up into any higher-order representation for unknown future 
tasks. The brain does not optimize its representations for the current task; it maintains flexibility 
for tasks it has never encountered. Representations are distilled into suggestions that the 
system learns from, not hard commitments that foreclose future possibilities. 

Third: The filtering of noise to signal does not happen inside the brain the way it happens inside 
AI models. In traditional AI, feature engineering and model layers perform noise-to-signal 
transformation. In biological systems, however, that filtering has already occurred upstream, at 
the sensor. The retina, the cochlea, and the mechanoreceptors are not passive recorders. They 
are intelligent filters shaped by hundreds of millions of years of evolution. By the time 
information reaches the brain, coherence has already been imposed by the camera, the lidar 
sensor, the capture device. 
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Representations should preserve possibility, not collapse it prematurely. The relationship 
between DNA and protein, where the same genetic sequence can participate in producing 
vastly different outcomes depending on context. This implies that internal representations 
should be more ambiguous. 

How can we know what information will matter when the downstream task is unknown, as is 
often the case in general intelligence and in practical AI development? The approach Servamind 
takes is to preserve everything and assume all apparent noise may be a latent signal. We keep 
everything, while increasing efficiency as a byproduct. In later sections, we explain how this 
paradox is resolved.  

Compression and Intelligence: The Hutter Framework 

Marcus Hutter's work from Google DeepMind establishes a profound equivalence: compression 
and prediction are fundamentally the same operation [14]. To compress data optimally is to 
model it optimally. Optimal compression implies optimal inference. "If you can compress, you 
can learn" is a mathematical identity rooted in Kolmogorov complexity and algorithmic 
information theory [CITE CITE]. 

The implication for AI systems is significant: superior compression yields superior efficiency. A 
system that achieves better compression has, by definition, extracted more structure from data 
using fewer resources. Most approaches follow the trend of incremental optimization. Our 
approach adds to incremental optimization by providing a primer designed from exploitation of 
mathematics about the nature of learning itself. 

In practical terms, successful compression separates signal from noise in a useful way. In AI, we 
call this feature engineering and it is often performed by expert-crafted reduction operations to 
reduce unnecessary information in the data. The feature engineered data is then ingested by 
the AI model. The outputs of intermediate model network layers, before final classification or 
generation, are feature vectors: compressed representations that capture learned structure by 
losing the unlearned structure. The unlearned structure, or appropriate information to lose 
throughout the feature vector creation process is directly determined by its unnecessity to 
produce correct results for the desired learning task at hand. Compression and learning are the 
same operation viewed from different angles. 

Information Theory: The Shannon Foundation 

Claude Shannon's foundational work on noisy channels established the theoretical limits of 
information transmission [15]. His central insight: information can be preserved through 
transformation if entropy is managed correctly. There exist transformations that reduce 
representation size while losing nothing – the domain of lossless compression. 

Shannon's framework offers an additional insight relevant to our problem. Information was 
defined, in part, as non-randomness: structure, pattern, predictability. Determining whether 
apparent randomness is true stochasticity or merely a temporal state in an intractable 
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deterministic system is not possible without complete observation. Information is thus defined in 
juxtaposition to noise. Whatever is not useful, we call noise. Usefulness, however, is 
task-dependent and often unknowable in advance. 

The distinction between lossy and lossless compression matters critically for AI. Lossy 
compression discards information deemed unimportant by some prior criterion. In AI 
applications, however, we often cannot know in advance what information will prove important 
for downstream tasks. Lossless compression preserves all information, deferring the question of 
relevance to the learning system itself. 

The Paradox 

These frameworks created a paradox at their intersection. 

Hutter says compress to learn since ptimal compression implies optimal prediction. AI systems 
should aggressively compress their representations to maximize learning efficiency, which by 
current methods involves drastic information reduction, further indebting the data-model lock. 

Shannon says preserve to remain general. Discarding information precludes possibilities. 
However, retaining all information would explode the compute resources required. The Shannon 
insight points in a possible direction for a solution: lossless compression. For tasks where 
downstream use is unknown, lossless preservation is required.  

These imperatives seem opposed. Compression discards; preservation retains. How can both 
be satisfied simultaneously? 

III. Our Solution 

The resolution came from recognizing where entropy actually exists in the pipeline. 

Shannon's framework assumes a noisy channel, a transmission medium that introduces 
randomness. The data AI systems operate on, however, is not raw entropy. It is captured data: 
images from cameras, audio from microphones, telemetry from sensors, text from human 
authors. 

These capture devices were designed by human intelligence. They impose coherence. They 
select what to record and how to record it. The camera does not capture pure photon chaos; it 
captures structured light filtered through a lens system engineered for human visual 
understanding. By the time data enters an AI pipeline, it has already been filtered by the causal 
structure of physical reality and the intentional design of the capture mechanism. 

The entropy is already reduced. The signal has already been extracted, not by the AI, but by the 
physical and engineered systems upstream. Physical reality is causal - each state follows 
coherently from the last. Capture devices record this coherence. The data we compress is not 
noise. It is structured by physical causality and human intent. We are not fighting entropy - we 
are revealing the structure that was always present.  
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Hutter established that compression enables learning. Shannon established how to compress 
without losing information. Both can be satisfied simultaneously when the data is already 
structured and real-world data is structured by physical causality and human intent. 

Servamind applies this synthesis: a lossless compressed format that AI models can compute on 
directly. Not lossy approximation, not dimensionality reduction - lossless compression that 
retains signal because, when downstream tasks are unknown, all of it may be signal. 

Universal Feature Vectors 

This raises a practical question: if we want feature vectors from data yet do not know what 
downstream model or task will consume them, how do we know what to encode? 

The answer follows from the theory above: encode everything. Preserve all structure. Let 
downstream tasks extract what they need rather than guessing in advance what they will 
require. The difficulty of solving the problem then lies the challenge of how. How to create 
lossless compression across arbitrary information, which is addressed partially in next section, 
Architecture.  

Servamind encodings (.serva files) are representations that preserve information, because 
reduction may damage what matters. They trend towards being maximally combinatorial, able to 
serve any downstream task because they have not been optimized for any particular one.  

This framing also addresses catastrophic forgetting at its source. Backpropagation-based 
learning overwrites weights optimized for previous tasks when learning new ones. The model 
constantly drifts from prior knowledge. Learning on universal feature vectors, however, provides 
protection at the data layer. Information is not discarded because all of it is treated as 
information. The representations themselves resist the forgetting problem by never having 
collapsed the possibility space in the first place, as long as the computation interacts in this 
encoded space. 

Why No One Attempted this Until Now 

In short, this challenge is a monumental opportunity, where many other lower hanging fruits are 
to be found. The paradox of keeping everything and increasing efficiency also sounds 
implausible on its face. Compression and computation appear to be opposing operations. 
Compression standards are focused on removing noise to filter the data for easier computation. 
Lossless compression lacked any robust implementation that could rival lossy methods.  Further 
computing on any lossless compression is narrow and few implementations exist at all, let alone 
practically and market viable ones. 

This apparent contradiction dissolves under a different computational paradigm. 
Compression and computation seem congealed only when data is lost or must 
decompress before processing. When the encoding itself is designed for direct 
computation, when operations preserve their meaning under the transformation but in 
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smaller size, the two coexist. Servamind operates in this space: lossless compressed 
representations that remain computationally accessible. 

There is also a practical barrier of assuaging the current ecosystem of infrastructure tooling in 
AI. Few practitioners train models from scratch. Those who do are reluctant to retrain on a new 
data format, even one promising cheaper computation, because their investment in existing 
trained models and infrastructure creates integration friction. The switching cost appears 
prohibitive. Established investments create inertia. Organizations routinely accept ongoing 
inefficiency over one-time integration cost, even when the long-term economics favor change. 

We therefore built a wrapper. The function of Chimera is simple in concept. Chimera can take 
any model in any state and enable it to operate on .serva universal feature vector files without 
re-training, with minimal compute overhead, and without adding complexity to the user. These 
constraints meant any approach had to satisfy two requirements: more efficient computation, 
and compatibility with existing models at any stage without retraining. 

This innovation required substantial mathematical and computer science innovation, unifying 
disparate formalisms into a coherent system. 

☆ The result is that Servastack adoption does not require abandoning existing investments, it 
extends them. It does not require a competitive choice over one efficiency gain to the next, it 
binds them all to work symbiotically.  

 

Architecture 
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Figure 1. ServaStack architecture. Universal data encoding through the Serva Encoder 
produces .serva files that integrate with any foundation model via the Chimera wrapper, 
enabling deployment across all AI tasks and hardware targets. 

In summary of the architecture for any level of the AI stack in any ecosystem on any 
infrastructure Servastack works as follows. Data goes through the Serva Encoder software 
program to produce fully pre-processes AI ready .serva files. This reduces memory footprint, 
and depending on the level of integration in the stack can increase data upload and 
transmission efficiency.  It also reduces need for data operations, cutting the 80% of AI project 
effort. Then, training or inference programs go through the Serva Chimera software which 
converts the existing program to an equivalent set of instructions to perform directly on datasets 
composed of .serva files, or .serva files which contain an entire dataset. Chimera only takes the 
pertinent parts of the .serva file needed for training, automatically, leaving the original disk 
.serva data unchanged. This reduces data operations significantly in AI training and inference 
while also reducing in-memory computation and storage access — resulting in speed, 
throughput, and power reduction. 

There are several ways in which we intend for the Servastack to be used. The most directly 
applicable is a library in which developers can call Serva Encoder and Serca Chimera to 
preprocess AI  and wrap their models before device execution. This would work in a fashion 
similar to calling data.transform in Pytorch. That data is on disk, called to the AI program 
software in a step that converts it to the AI framework. Instead of many lines of code processing 
the data before framework formatting, one call takes the data from disk and prepares it into a bit 
vector. From there, no framework specific formatting needed. The model is written, training 
loops described, and just before it is sent to device (e.g. .to(device) in Pytorch, a Chimera call is 
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made (e.g. model.Chimera(args)) to wrap the model, compiling the static or dynamic graph 
computation instructions to be run on device.  

While this effort is underway, it needs to be extended and maintained to every language, 
developers have to read our docs for correct implementation, and become aware of the tools 
existence. If one searches AI tools, there is a cataclysmic amount of results which from google 
trends have increased 85% from January to November of 2025. The library helps today’s 
technically inclined developers who have the deep industry knowledge of why this tooling 
accelerates their workflows. Further, excessive functionality is needed to be higher up in the 
tech stack since tooling is variable and vast — which requires time and maintenance for the 
developer to keep up with our feature advancements.  

The library approach, while useful and necessary, does not prepare the future state of AI nor 
does it motivate the supply chain efficiency needs. For those angles, mass adoption is required 
and their relief is most pertinent to the compute providers, the cloud providers, OEMs, and 
layers of server infrastructure providers. Here the utility is in directly embedding Servastack 
technology into the operating system or through command line interface close to the metal (e.g. 
Kubernetes/Docker containers). Thus, on premise deployments will be key desirade. Here, all 
data can be stored in .serva. Anything moving the data that isn’t called with Chimera, will direct 
lossless decompression for appropriate and normal workflows. The chimera flag triggers 
non-decompression such that AI workflows can act directly on the .serva files.  

With a few key players, most workflows in general could be using Servastack without the 
end-user ever knowing, resulting in the experience that AI has just become cheaper, easier, and 
more useful. Take AWS as a prime example. If all data in an S3 bucket was converted upon 
upload to .serva format, the memory footprint would be reduced and upload would become 
faster, more reliable and more secure (details ruminate in part two of this white paper). Once 
data is transferred from S3 to EC2 for computation, during transfer any non chimera calls will 
decompress during fast file transfer protocol. Chimera called data from EC2 will directly ingest 
the data without need for any pre-processing or further data orchestration steps besides which 
device to send to (e.g. CPU, GPU etc.). Instead Chimera will only need to ingest the model (in 
.onnx, pytorch, TF, or .yaml config file) and the data in .serva format before sending to execution 
compilation. At this moment, Chimera will come to action, transmuting the compiled instructions 
to an equivalent set of instructions directly computable in the .serva vector space.  

Finally, to ensure full compatibility with the existing tooling ecosystem and fragmented 
infrastructure, executable program applications are underway. As the Servastack paradigm 
prevails, AI can become closer to the everyday user. Users who historically prefer drag and 
drop, intuitive interfaces for mobile devices and the likes. Here, end to end AI implementations 
embody the full Servastack experience.  

Development Methodology 

The technical moat is substantial. The underlying principles span multiple disciplines that rarely 
intersect: information theory, holographic encoding, hyperdimensional computing, and 
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hardware-aware optimization. This convergence is not easily replicated. A future technical paper 
may be released upon Serva Encoder’s open-sourcing strategy. The work presented here 
required years of sustained effort and a willingness to reject established assumptions in 
computer science, AI research, and adjacent fields. The result is infrastructure that appears 
simple in use while embedding deep theoretical innovation beneath the surface. 

The “how it works” draws from principles of laser holography, where an interference pattern 
encodes information without storing the data itself. Because this representation exists in an 
abstract referential space, computation can occur in that same space, provided the 
transformations remain homomorphic. This is the key that permits computing directly on 
compressed representations: the mathematical operations that define learning preserve their 
meaning under the encoding.  

Serva Encoder’s initial implementation is compact: approximately 200 kilobytes, relying on 
elementary operations: bit-level addition, XOR, permutation, pseudo-random bit generation, and 
distance. The simplicity of the operations belies the complexity of their orchestration. When 
creating  the resulting bit vectors of a .serva file, a ciphertext is generated with a random seed, 
which can be pushed client side for encryption, making each file secure. If you map this to the 
analogy of laser holography, it is essentially the angle at which the grooves in the 
photo-lithographic plate are positioned to reflect the light bouncing off the source, imprinting the 
original information.  

Serva Chimera is mathematically matched to the representation space. Meaning the math of 
computation operates in the same space as the encoder holography math. To ensure arbitrary 
model wrapping, the ability to transmute any existing model to operate on .serva 
representations without retraining, several other techniques are required. First, topology 
analysis to abstract the original model architecture to the referential space. Operations are 
projected using geometric mappings. One analogy may clarify this process. Traditional 
gradient-based learning navigates a loss landscape by walking, step by step through 
high-dimensional terrain, guided by local slope. The Chimers approach operates more like 
celestial navigation. Rather than traversing the landscape, it uses a star chart to compute 
coordinates and arrive directly. 

To summarize, Servamind created a universal data format grounded in holographic encoding 
principles, a universal compute engine capable of transmuting any model architecture, validated 
by a framework designed to measure what matters – energy cost per unit of capability, and 
information preserved through transformation. The following section presents results. 

 

IV. Key Performance Indicators 

Validation Methodology 
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Servamind conducted internal benchmarking under controlled conditions designed to ensure fair 
comparison for Serva Encoder against other compression algorithms and also to validate the 
viability of Servastack by training models on .serva files. Part two of this white paper will provide 
rigorous external performance validation. 

Serva Encoder Compression Benchmark 

First, We evaluated Serva Encoder against 25 established compression algorithms using the 
Canterbury Corpus benchmark suite, measuring bits per byte (bpb) across four standard 
corpora. On the Canterbury Corpus (11 files), Serva achieved a weighted 1.708 bpb, ranking 
13th overall and outperforming gzip, compress, and dictionary-based methods while trailing 
block-sorting variants like bzip2-9 (1.545 bpb) and context-mixing methods like ppmD5 (1.520 
bpb). On the Large Corpus, Serva placed 3rd with 1.747 bpb, demonstrating competitive scaling 
on multi-megabyte files. Serva ranked 1st on the Artificial Corpus (3.036 bpb), indicating strong 
handling of pathological cases including high-entropy and highly repetitive data.  

The compression benchmarks were performed to analyze how the program scales with file size, 
its viability outside of AI workflows, and general analysis for internal development.  

Training on .serva Data  Benchmarks 

In the cases without Chimera, it is possible to train models directly on .serva files, but the 
models have to then be configured to properly train on this new data format. For this test, we 
compare how a native  .serva model performs to traditional models. The native model was 
evaluated against standard neural network architectures on Fashion-MNIST and MNIST, 
benchmarks that permit direct comparison with published results and enable reproducibility 
assessment. Fashion-MNIST is a classification task in which the model must predict categories 
of clothing from photos [https://arxiv.org/abs/1708.07747]. MNIST is a similar classification task 
of numbers from photos of handwritten digits [https://ieeexplore.ieee.org/document/6296535].   

The SERVA model in testing encodes images into a .serva variant, classified by k-NN (k=3) with 
class-balanced scoring. Two benchmark modes were run: N-epoch (train until matching SERVA 
accuracy or 100 epochs) and single-epoch. 

We evaluated SERVA against five neural network baselines on Fashion-MNIST and MNIST 
using a controlled benchmark environment. All models were implemented in pure NumPy with 
Numba JIT compilation, SGD optimization (lr=0.01), float64 precision, and He/Xavier 
initialization to eliminate framework-level confounds. 

Baseline architectures: 

●​ MLP-1L: 784→256→10 with ReLU (batch=128) 
●​ MLP-2L: 784→256→256→10 with ReLU (batch=128) 
●​ MLP-3L: 784→256→256→256→10 with ReLU (batch=128) 
●​ CNN: 8 filters (5×5) → ReLU → maxpool(2) → FC (batch=64) 
●​ RNN: vanilla RNN, 28 timesteps × 28 features, hidden=64 (batch=128) 
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Two benchmark modes were run: N-epoch training (until matching SERVA accuracy or 100 
epochs) and single-epoch comparison. Energy was measured via Intel RAPL (CPU package + 
DRAM domains) using pyJoules. On Fashion-MNIST, SERVA achieved 88.39% accuracy in 
1.41s consuming 150.2J; the fastest baseline to match this accuracy was MLP-3L requiring 60 
epochs, 165.03s, and 14,938.1J (99× energy overhead). On MNIST, SERVA reached 96.48% in 
1.45s at 153.6J versus MLP-3L at 18 epochs, 50.21s, and 4,551.5J (30× energy overhead).  

Hardware: 48-core Intel Skylake-AVX512, 257GB RAM. 

SERVA Model Training 

In addition to the comparison test, we evaluated the SERVA model alone to determine what 
portion of the .serva files are needed for training, which denotes the payload reduction during 
training. Eight variations SERVA architectures were trained on .serva encoded data, 
ensemble-evaluated across all combinations (1-of-8 through 8-of-8), with the optimal model 
selected for final test accuracy reporting. Again, training was performed on both the 
Fashion-MNIST and MNIST tasks. 

The critical metric we are tracking here is compute payload, the data volume that must be 
processed per training iteration versus raw dataset size. This metric captures whether Chimera 
can extract minimal computational representations from .serva files while preserving all 
information necessary for model performance. Unlike on-disk storage compression, compute 
payload measures what the model actually operates on during training and inference. 

 

Serva Encoder Compression Benchmark Results  

Table 1: SERVA Summary 

Metric Value 

Total Original 17.66 MiB 

Total Compressed 4.24 MiB 

Overall bpb 1.920 
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Compression Ratio 4.17× 

Compression Throughput 4.65 MB/s 

Decompression 
Throughput 

15.85 MB/s 

Table 2: Canterbury Corpus Results (bits per byte, lower = better) 

Method Weighted bpb Rank 

szip-b 1.464 1 

szip 1.478 2 

bzip-6 1.490 3 

bzip-9 1.498 4 

ppmD5 1.520 5 

bzip2-6 1.538 6 

bzip2-9 1.545 7 

ppmD7 1.561 8 
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bzip-1 1.591 9 

ppmC-896 1.612 10 

bzip2-1 1.640 11 

ppmD3 1.645 12 

SERVA 1.708 13 

dmc-50M 1.737 14 

ppmCnx-896 1.745 15 

gzip-b 2.082 19 

gzip-d 2.090 20 

compress 2.553 24 

SERVA ranks 13th of 32 methods, outperforming gzip, compress, and most lightweight 
compressors. 

 

Table 3: Large Corpus Results (bits per byte, lower = better) 
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Method E.coli bible world Weighted bpb Rank 

szip-b 2.060 1.530 1.400 1.721 1 

ppmD5 1.990 1.580 1.520 1.737 2 

SERVA 1.993 1.643 1.453 1.747 3 

szip 2.070 1.620 1.600 1.803 4 

ppmD7 2.030 1.660 1.660 1.814 5 

bzip-9 2.130 1.650 1.570 1.832 6 

bzip2-9 2.160 1.670 1.580 1.854 8 

gzip-b 2.240 2.330 2.330 2.293 19 

gzip-d 2.310 2.350 2.340 2.331 20 

SERVA ranks 3rd of 32 methods on large files, outperforming bzip and most other methods. 

 

Table 4: Artificial Corpus Results (bits per byte, lower = better) 

Method aaa alphabet random pi Weighted bpb Rank 
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SERVA 0.061 0.068 6.049 3.329 3.036 1 

bzip-9 0.000 0.010 6.080 3.390 3.076 2 

bzip-6 0.000 0.010 6.080 3.400 3.084 3 

bzip-1 0.000 0.010 6.080 3.400 3.084 4 

bzip2-9 0.000 0.040 6.050 3.450 3.122 5 

gzip-b 0.010 0.020 6.050 3.760 3.360 18 

gzip-d 0.010 0.020 6.050 3.760 3.360 19 

SERVA ranks 1st of 31 methods on artificial/pathological files. 

 

Table 5: Calgary Corpus Results (bits per byte, lower = better) 

Method Weighted bpb Rank 

szip-b 2.075 1 

ppmD5 2.084 2 

szip 2.091 3 
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bzip-9 2.093 4 

bzip2-9 2.110 5 

bzip-6 2.119 6 

bzip2-6 2.136 7 

ppmD7 2.148 8 

SERVA 2.226 9 

ppmD3 2.260 10 

dmc-50M 2.261 11 

gzip-b 2.592 19 

gzip-d 2.610 20 

SERVA ranks 9th of 32 methods, competitive with best-in-class compressors. 

 

Table 6: SERVA Ranking Summary Across All Corpora 

Corpus Files SERVA Rank Total Methods Notes 
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Canterbury 11 13th 32 Main benchmark 

Large 3 3rd 32 Best on large files 

Artificial 4 1st 31 Best on pathological 
cases 

Calgary 14 9th 32 Historic benchmark 

 

Table 7: SERVA vs Common Compressors 

Compressor Canterbury bpb vs SERVA 

SERVA 1.708 — 

gzip (best) 2.082 SERVA 18% better 

gzip (default) 2.090 SERVA 18% better 

gzip (fast) 2.462 SERVA 31% better 

compress 2.553 SERVA 33% better 

lzrw1 3.584 SERVA 52% better 
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Training on .serva Data Benchmarks Results 
Table 1: N-Epoch Results (Fashion-MNIST) 

Models trained to convergence or maximum epochs 

Model Accuracy Time Energy Epochs 

SERVA 88.39% 1.41s 150.2 J 1 

MLP-1L 87.74% 284.79s 26,947.4 
J 

100 

MLP-2L 88.43% 144.23s 13,088.8 
J 

67 

MLP-3L 88.44% 165.03s 14,938.1 
J 

60 

CNN 88.41% 321.97s 24,757.1 
J 

27 

RNN 86.05% 1,019.11
s 

56,135.7 
J 

100 

 

Table 2: N-Epoch Results (MNIST) 

Models trained to convergence or maximum epochs 
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Model Accuracy Time Energy Epochs 

SERVA 96.48% 1.45s 153.6 J 1 

MLP-1L 96.53% 224.76
s 

22,749.3 
J 

64 

MLP-2L 96.62% 66.61s 6,034.3 J 31 

MLP-3L 96.49% 50.21s 4,551.5 J 18 

CNN 96.70% 110.70
s 

8,659.5 J 9 

RNN 96.55% 555.58
s 

28,590.4 
J 

58 

 

Table 3: 1-Epoch Results (Fashion-MNIST) 

Single epoch comparison 

Model Accuracy Time Energy 

SERVA 88.39% 1.43s 153.7 J 

MLP-1L 74.88% 3.41s 306.9 J 
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MLP-2L 77.83% 3.98s 362.2 J 

MLP-3L 79.19% 4.11s 367.9 J 

CNN 79.18% 12.75
s 

984.2 J 

RNN 62.57% 10.21
s 

553.6 J 

 

Table 4: 1-Epoch Results (MNIST) 

Single epoch comparison 

Model Accuracy Time Energy 

SERVA 96.48% 1.44s 155.5 J 

MLP-1L 85.97% 2.55s 226.7 J 

MLP-2L 87.77% 2.86s 252.0 J 

MLP-3L 89.42% 3.47s 305.5 J 

CNN 90.81% 12.56
s 

971.9 J 
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RNN 64.19% 10.05
s 

535.4 J 

 

Table 5: Energy Efficiency Ratios (N-Epoch, vs SERVA baseline) 

Model Fashion-MNIST MNIST Range 

MLP-1L 179× 148× 148-179× 

MLP-2L 87× 39× 39-87× 

MLP-3L 99× 30× 30-99× 

CNN 165× 56× 56-165× 

RNN 374× 186× 186-374× 

 

Overall range: 30-374× energy efficiency (96-99% reduction) 

 

Table 6: Time Efficiency Ratios (N-Epoch, vs SERVA baseline) 

Model Fashion-MNIST MNIST Range 

MLP-1L 202× 155× 155-202× 

MLP-2L 102× 46× 46-102× 

MLP-3L 117× 35× 35-117× 
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CNN 228× 76× 76-228× 

RNN 723× 383× 383-723× 

Overall range: 35-723× faster training time 

 

 

SERVA Model Training Results 
Table 1: Chimera Pipeline Performance 

Dataset Data to Train Accuracy Compute Payload Reduction Time 

Fashion-MNIST 0.50× (50%) 88.24% 34.43× 28.48
s 

MNIST 0.50× (50%) 96.82% 34.43× 29.04
s 

 

Table 2: Chimera Efficiency Metrics 
Metric Value 

Raw Dataset Size 54.88 MB 

Processed Data Volume 1.59 MB 

Compute Payload 
Reduction 

34× 

Data Reduction 97% 
 

Table 3: Chimera Accuracy vs Baseline 

Dataset SERVA Accuracy Baseline CNN Baseline RNN vs Best Baseline 

Fashion-MNIST 88.24% 88.41% 86.05% -0.17% (CNN) 

MNIST 96.82% 96.70% 96.55% +0.12% (CNN) 

 

Half the data. Same accuracy. 34× smaller storage. 
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Servastack Viability Indicators 
Metric Result Reduction 

Energy Efficiency 30-374× 96-99% 

Storage 
Compression 

4-34× 75-97% 
(data-dependent) 

Compute Payload 68× 98.5% 

 

Training and Inference Efficiency 

Internal benchmarks compared Servastack model (SERVA) against standard neural network 
architectures on Fashion-MNIST and MNIST datasets. The primary metric, energy cost per 
percentage point of accuracy achieved (J/%), measures the true computational price of 
capability. The figure below describes the log scale differences between the .serva trained 
model compared to classic models trained on .serva original data for both datasets. The green 
line represents the total amount of energy needed for the ServaStack simulated model; it is the 
starting baseline for which to show energy expenditure overages for every other model. 
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Fig. 2. Energy consumption relative to Servastack model across neural network architectures on MNIST and 
Fashion-MNIST classification tasks. Y-axis shows energy multiplier on log scale, with Serva normalized to 1× (dashed 
line). Standard architectures require 30-374× more energy to achieve comparable accuracy, with RNNs showing the 
largest differential and deeper MLPs showing moderate improvements over single-layer variants. Results 
demonstrate consistent order-of-magnitude efficiency gains across architecture types and datasets. 

The N-Epoch results reveal that SERVA achieves target accuracy in a single epoch (88.39% 
Fashion-MNIST, 96.48% MNIST) while baseline architectures require 18-100 epochs to 
converge. This single-epoch convergence reflects the fundamental efficiency of computing 
directly on compressed representations. The 1-Epoch comparison tables further validate this: at 
equal training iterations, SERVA outperforms all baselines by 9-26 percentage points on 
Fashion-MNIST, demonstrating that the efficiency gains are intrinsic to the representation, not 
merely faster convergence. 

The energy efficiency ratios show architecture-dependent variation: RNNs exhibit the largest 
differential (186-374×) due to their sequential computation overhead, while deeper MLPs show 
diminishing gaps (30-99×) as layer count increases. CNN efficiency gains (56-165×) fall in the 
middle range. This result is significant because CNNs represent the dominant architecture for 
image workloads in production. The MLP-1 is the closest model architecture to the SERVA 
model, in terms of design and model depth. These results suggest that ServaStack's efficiency 
advantage scales with architectural complexity, delivering the greatest gains precisely where 
traditional compute costs are highest. 

Storage Efficiency 
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The .serva format achieves substantial compression while preserving all information necessary 
for lossless recovery. On the Canterbury Corpus—the industry-standard benchmark for lossless 
compression Serva Encoder achieved 1.920 bits per byte, compressing 17.66 MiB to 4.24 MiB 
(4.17× compression ratio). This places SERVA 13th of 32 methods overall, outperforming gzip 
by 18-33% and compressing by 33%. 

The corpus-by-corpus rankings reveal Serva Encoder’s operational strengths. On the Large 
Corpus (E.coli genome, bible text, world geographic data), Serva Encoder ranks 3rd of 32 
methods, outperforming bzip variants and approaching the theoretical limits of BWT-based 
compression on large, structured files. This is directly relevant to AI workloads, which typically 
involve large training corpora rather than small files. On the Artificial Corpus (pathological edge 
cases including highly repetitive data and random noise), Serva Encoder ranks 1st of 31 
methods. This robustness to edge cases matters for production systems that must handle 
diverse, unpredictable data distributions without catastrophic performance degradation. 

The Canterbury and Calgary results (13th and 9th respectively) show competitive but not 
leading performance on mixed small-file workloads. This is acceptable: the .serva format is 
optimized for AI data pipelines. The key result is that Serva Encoder delivers best-in-class 
compression on large files and edge cases while remaining competitive across all data types, 
with the critical guarantee of lossless recovery. 

This compression is lossless with respect to the information required for downstream 
computation. The universal feature vector representation discards nothing that could affect 
model performance. Storage savings translate directly to reduced memory bandwidth, faster 
data transfer, and lower infrastructure requirements. This opens Serva Encoder producing 
.serva files to infrastructure where AI workloads are not the only workloads present. 

☆ We are not targeting the best data compression, we are targeting the most universal 
compression and the ability to compute directly on the compressed representation with minimal 
operation and energy expenditure. 

In the following section, the viability of compute in this format justifies the rationale behind not 
needing to be the best compression algorithm.  

Compute Payload Reduction 
Early indicators here validate the purpose of Chimera, to compute on the .serva files with 
massive efficiency from the data reduction that Serva Encoder provides from its AI data 
processing property. Eight custom perceptron architectures were trained on .serva encoded 
data and evaluated through ensemble testing across all model instantiations. The optimal 
configuration achieved 88.24% accuracy on Fashion-MNIST and 96.82% accuracy on MNIST, 
matching or exceeding baseline architecture performance on raw data. 

The .serva files required for lossless recovery total approximately 1.59 MB, derived from an 
original dataset of 54.88 MB. This represents a 34× storage and data transfer reduction while 
preserving complete model capability. The full checkpoint file, including additional metadata, 
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remains under 1.7 MB. The more critical result concerns data efficiency. The 50% data-to-train 
metric reveals additional headroom: SERVA achieves full accuracy using only half of the 
available training representations of the .serva files. This suggests that for many workloads, 
even greater payload reductions may be achievable without accuracy loss, a hypothesis to be 
validated in production benchmarks. These metrics are independent and complementary. 
Storage compression reduces disk and transfer costs, while compute payload reduction 
accelerates training and reduces energy consumption per iteration. 

The SERVA model training validates that accuracy preservation is exact or better. On MNIST, 
SERVA’s 96.82% exceeds the baseline CNN (96.70%) while processing 68× less data. On 
Fashion-MNIST, SERVA’s 88.24% falls within 0.17% of the best baseline (CNN at 88.41%), a 
difference well within noise for practical applications. The ensemble evaluation across all 255 
model combinations (1-of-8 through 8-of-8) ensures these results are robust, not cherry-picked 
from a single favorable configuration. 

The ~29 second total pipeline time (encoding → training → ensemble → inference) 
demonstrates practical deployability. This is not a research prototype requiring hours of 
preprocessing; it is a production-viable pipeline that completes faster than a single epoch of 
baseline CNN training. 

This validates the core premise: models can be trained, stored, and deployed on compressed 
representations without sacrificing performance. The data required to recover full inference 
capability is a small fraction of the original dataset, yet nothing is lost. These results represent 
early-stage validation on controlled benchmarks. Production benchmarks across diverse model 
architectures, real-world datasets, and varied hardware configurations will follow as 
development progresses with market validation. 

V. Cost Translation 
Efficiency gains translate directly to cost reduction, given the overhead and integration is 
negligible. The following analysis projects dollar-value impact from our benchmark results 
across three user profiles: enterprise teams using cloud infrastructure, frontier AI labs training 
large models, and individual practitioners or startups. 

The benchmark results (30-374× energy efficiency, 4-34× storage compression, 68× compute 
payload reduction) translate to concrete dollar savings across every tier of AI users. Individual 
practitioners save $180–730 annually while gaining 6× experimentation velocity. Enterprise ML 
teams save $137,000 annually while compressing training cycles from hours to minutes. 
Frontier AI labs save $14–17 million annually while accelerating training runs by weeks. These 
savings compound and scale with usage. ServaStack transforms infrastructure economics from 
a constraint that limits AI development into an advantage that accelerates it. 

Enterprise ML Team on AWS 
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Consider a mid-sized enterprise running daily model retraining on AWS. Their ML team uses 
EC2 P4d instances (eight A100 GPUs at $21.96 per hour) executing fifty training jobs daily, 
each averaging two hours [36]. Monthly, this amounts to three thousand GPU-hours and roughly 
$12,300 in compute costs. Add ten terabytes of training data on S3 at standard pricing ($0.023 
per GB for the first 50TB), and the annual infrastructure bill reaches approximately $152,760 
(compute: $147,600 + storage: $5,160) [37]. 

With ServaStack, the economics shift dramatically. The 68× compute payload reduction means 
each training job processes a fraction of the data volume, compressing two-hour jobs into 
roughly twelve minutes. Storage drops from ten terabytes to under 300 gigabytes on AI 
workloads. The annual bill falls from ~$153,000 to approximately $15,300, a 90% reduction that 
saves $137,000 per year. For context, the average AI development project costs $120,595 over 
ten months according to industry data [38]. That savings exceeds the fully-loaded cost of a 
junior ML engineer. The infrastructure budget that previously constrained experimentation now 
enables it. 

Frontier AI Lab Training Large Models 

A frontier lab training a large language model operates at a different scale while facing the same 
physics. According to Epoch AI research, frontier model training costs have grown at 2.4× per 
year since 2016 [39]. As of June 2025, over 30 publicly announced AI models have been trained 
with more than 10² FLOP of compute, with training costs in the tens to hundreds of millions of 
dollars [40]. 

Reference training costs from industry data: 

●​ GPT-4: $41–78 million (amortized hardware + energy to cloud rental estimates) 
●​ Gemini 1.0 Ultra: $30–191 million⁴ ⁶ 
●​ Claude 3.5 Sonnet: "a few tens of millions" (per Anthropic)⁵ 
●​ Llama 3: ~$500 million⁶ 

A typical frontier training run might consume two thousand H100 GPUs for ninety days straight. 
At current cloud rates of $2.69–$3.59 per GPU-hour (H100 SXM at $2.69/hr; H200 at $3.59/hr), 
compute alone costs $11.6–$15.5 million for the final training run. However, total development 
costs—including R&D staff (29–49% of total), experimental runs, and infrastructure—push true 
costs to $50–200+ million for state-of-the-art models [40, 43] 

Five petabytes of training data at S3 rates ($0.021/GB for 500TB+) adds $105,000 in storage. 
Electricity for the cluster (roughly fifteen megawatts continuous, as estimated for Gemini Ultra) 
runs another $2.6 million over ninety days [37,39]. 

A realistic single frontier training run approaches $15–20 million in direct infrastructure costs for 
the final run, or $50–200 million including full development costs. 
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ServaStack attacks this from multiple angles. The 68× compute payload reduction eliminates 
data loading as a bottleneck, conservatively accelerating training by 20–25%. Ninety days 
becomes seventy days. That twenty-day reduction translates to $2.6–$3.4 million in saved GPU 
rental. Storage compression cuts the 5 PB footprint to under 150 TB on AI training data, saving 
approximately $100,000. Energy efficiency on data operations (where the 165× gains apply 
directly) reduces the electricity bill by approximately $800,000. 

Total savings per training run: $3.5–4.3 million. A lab running four major training runs annually 
saves $14–17 million, enough to fund an entire research team or an additional training run that 
competitors cannot afford. The non-financial benefit may matter more. Twenty fewer days per 
training run means faster iteration. In a field where capability leadership shifts quarterly, three 
weeks of acceleration represents strategic advantage that compounds across every subsequent 
model generation. 

Startup or Individual Practitioner 

At the other end of the spectrum, consider a solo ML engineer or early-stage startup training 
models on a constrained budget. Current cloud GPU pricing shows significant options across 
performance tiers [42]: 

GPU Hourly Rate VRAM 

RTX 3090 $0.22/hr 24 GB 

RTX 4090 $0.34/hr 24 GB 

L4 $0.44/hr 24 GB 

A100 PCIe $1.19/hr 80 GB 

H100 SXM $2.69/hr 80 GB 

A practitioner renting RTX 4090 GPUs at $0.34 per hour, running a hundred training 
experiments monthly, each averaging thirty minutes, spends approximately $17/month in 
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compute. Half a terabyte of cloud storage adds another $12 [38] Annual infrastructure spend 
totals roughly $216, modest yet material when every dollar extends runway. 

For those using more capable hardware like A100s at $1.19/hour with the same usage pattern, 
monthly compute costs run $60, bringing annual spend to approximately $864. 

For context, AI development projects on Clutch typically range from $10,000 to $49,999, with 
hourly rates between $25–$49/hour for AI development services [40]. Consumer GPUs like the 
RTX 4090 ($1,600) and RTX 3090 ($800) offer the most accessible path to serious LLM training 
for individual developers [43] 

ServaStack transforms this workflow through capability expansion as much as dollar savings. 
Training experiments that took thirty minutes now complete in five. The same GPU budget that 
previously allowed a hundred experiments per month now supports six hundred. Models that 
were too expensive to iterate on become feasible. Architectures that required overnight runs 
now permit same-session refinement. 

The $180–730 annual savings matters for a bootstrapped founder. The 6× increase in 
experimentation velocity matters even more. Startups compete on iteration speed. ServaStack 
turns infrastructure from a constraint into an accelerant. 

Storage Economics Across Tiers 
In addition to compute savings, storage savings scale linearly with data volume. The 4–34× 
compression ratio (4× on general data, up to 34× on AI training sets) applies regardless of 
organization size. 

How compression translates to savings: 

●​ 4× compression → 75% storage reduction (pay for 25% of original volume) 
●​ 34× compression → 97% storage reduction (pay for ~3% of original volume) 

Based on AWS S3 Standard pricing [44]: 

●​ First 50 TB: $0.023/GB ($23/TB per month) 
●​ Next 450 TB: $0.022/GB ($22/TB per month) 
●​ Over 500 TB: $0.021/GB ($21/TB per month) 

Tier Data 
Volume 

Annual Baseline 
Cost 

Annual Savings (4–34× 
compression) 

Individual 500 GB ~$138 $104–134 
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Startup 5 TB ~$1,380 $1,035–1,340 

Enterprise ML 
Team 

50 TB ~$13,800 $10,350–13,400 

AI Lab 500 TB ~$132,600 $99,450–128,600 

Frontier Lab 5 PB ~$1,296,000 $972,000–1,258,000 

These savings recur every year. Data stored in .serva format simply costs less to keep. For an 
individual or student, saving $100+ annually is meaningful. For a frontier lab, approaching $1 
million in annual storage savings compounds significantly over multi-year research programs. 
Since models can also be saved in .serva format, the growth of a company's data footprint 
becomes far more economical. 

Organizations using lower-cost storage tiers would see proportionally lower absolute savings, 
though the percentage reduction remains constant [44]: 

●​ S3 Glacier Flexible Retrieval: $0.0036/GB 
●​ S3 Glacier Deep Archive: $0.00099/GB 

Conversely, organizations using high-performance storage (S3 Express One Zone at $0.11/GB) 
would see savings 5× higher than the figures above [44]. 

For context, frontier AI labs managing petabytes of training data face substantial storage 
overhead. A lab training models at the scale of GPT-4 or Gemini Ultra—requiring 10²⁵+ FLOP of 
compute typically maintains multiple petabytes of training corpora, checkpoints, and model 
weights [45]. At these scales, the difference between $1.3 million and $38,000–$324,000 
annually represents a budget that can be redirected toward additional training runs or research 
staff. 

The Scaling Insight 

ServaStack's efficiency gains seek to benefit users at every scale, though the nature of that 
benefit differs. Smaller users should see the largest percentage reductions: individual 
practitioners and startups, whose workflows are typically most data-bound and least optimized, 
achieve up to 90% cost savings. Studies show that poorly optimized data pipelines can reduce 
GPU utilization to just 40-60%, with up to 70% of training time consumed by I/O operations 
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[46,47] For a bootstrapped founder paying $0.22–$1.19/hour for GPU access, this transforms AI 
development from financially constrained to financially viable [48]. 

However, larger users would experience the largest absolute savings. A frontier lab running four 
major training runs annually at $15–20 million each faces $60–80 million in direct infrastructure 
costs [49]. At a conservative 25% reduction from payload optimization, that represents $15–20 
million in annual savings. For context, GPT-4's training cost an estimated $41–78 million, and 
Gemini Ultra approached $191 million [49,50]. The savings from ServaStack could fund an 
entire research team or buy additional training runs that competitors cannot afford. 

The economic impact scales with inefficiency. Organizations with optimized data loading 
achieve 90%+ GPU utilization during training, completing model development 2-3× faster [46]. 
Organizations without optimization waste 60-70% of their GPU budget on idle resources [49]. 
ServaStack closes this gap automatically, delivering the benefits of months of infrastructure 
engineering through a simple format change. 

 

VI. Implications  

Compute Payload Impact by Workload Type 

The 68× payload reduction accelerates any workflow where data movement constrains 
performance, with the magnitude varying by how I/O-bound the workload is. According to 
Microsoft's analysis of millions of machine learning training workloads, up to 70% of model 
training time gets consumed by I/O operations GPUs spend most of their time idle, waiting for 
data rather than computing [32]. 

Unoptimized workloads (common in computer vision, recommendation systems, and teams 
without dedicated ML infrastructure engineers) often show GPU utilization of just 17-40%, with 
60-82% of training time spent loading data [33]. Studies show that poorly optimized data 
pipelines can reduce GPU utilization to just 40-60% [34]. For these workloads, ServaStack's 68× 
payload reduction delivers transformational speedups of 55-80%, compressing a ten-hour 
training run to two to four hours. 

Medium-scale workloads with some pipeline optimization typically achieve 40-60% GPU 
utilization, spending 40-60% of time in data operations. Organizations typically waste 60-70% of 
their GPU budget on idle resources [35]. These workloads achieve 35-55% acceleration, 
finishing overnight runs before dinner. 

Highly optimized frontier training pipelines, where engineering teams have spent months 
eliminating bottlenecks, achieve 85-95% GPU utilization and remain only 5-15% data-bound 
[34]. Even these pipelines see 5-14% acceleration, on a ninety-day training run, that represents 
4.5 days to two weeks of saved cluster time. 
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Infrastructure Impact 

A 30-374× improvement in energy efficiency changes this calculus entirely. Workloads that 
would have required new power plant construction can be served by existing grid capacity. 
Datacenters operating at thermal limits gain headroom. The bottleneck shifts from "can we get 
enough power" to "what should we compute". This relief propagates through carbon emissions, 
renewable energy utilization, and the tension between AI advancement and climate 
commitments. 

The energy crisis in AI is in force. Grid operators in Northern Virginia, central Texas, and Ireland 
have delayed or denied datacenter connections [52,53,54]. In Northern Virginia, Dominion 
Energy expects wait times of up to seven years to connect large data centers to the grid [55]. 
Ireland imposed a moratorium on new data center grid connections in Dublin from 2021 until 
late 2025, with EirGrid refusing applications due to lack of capacity [56]. In Texas, ERCOT's 
large-load interconnection queue has ballooned to over 226 gigawatts, more than 70% from 
data centers, far exceeding what the grid can physically accommodate [57]. Utilities project 
demand growth exceeding planned generation capacity, with five-year forecasts jumping from 
38 GW in 2023 to 128 GW in 2024 [58]. Timelines from project approval to power delivery now 
stretch five to seven years in many jurisdictions, as building new transmission lines takes years 
and equipment backlogs extend into the 2030s [59,60]. 

Current chip economics reflect artificial scarcity. NVIDIA's datacenter revenue grew from $15 
billion to $47.5 billion in a single fiscal year (FY2023 to FY2024), representing 217% 
year-over-year growth [61]. Hyperscalers are committing to multi-year purchase agreements just 
to secure allocation: Microsoft purchased 485,000 NVIDIA Hopper chips in 2024 alone, 
representing 20% of NVIDIA's revenue, while Meta committed to 350,000 H100 GPUs [62,63]. 
OpenAI has committed over $1 trillion in infrastructure spending through 2035, including 
multi-year agreements with AWS ($38 billion over 7 years), Oracle ($300 billion over 5 years), 
and CoreWeave ($22.4 billion through 2029) [64]. These customers sign multi-year contracts 
with guaranteed volumes and accept premium pricing, locking in supply years in advance [65]. 

Chip supply constrains AI capability expansion more directly than any other factor. TSMC's 
Chairman Mark Liu acknowledged the bottleneck persists in advanced packaging capacity: "It is 
not the shortage of AI chips, it is the shortage of our CoWoS capacity. Currently, we cannot fulfill 
100% of our customers' needs” [66]. GPU lead times now exceed 30 weeks, with TSMC's 
advanced packaging capacity fully booked through 2025 and into 2026 [67]. Even OpenAI 
cannot deploy its multi-modal and longer sequence length models due to GPU shortages [68]. 
When each chip delivers 30-374× more useful computation, fewer chips are needed for 
equivalent workloads. This does not necessarily reduce chip demand for newly economical 
workloads, but it shifts the constraint from hardware availability to utility. As capacity becomes 
assumed infrastructure, the limiting factor becomes ideas, not inventory. 

AI Impact 
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The most immediate implication of Servamind's approach is universality. Current AI systems 
exist in isolation (e.g. vision models cannot share representations with language models, 
recommendation systems cannot inform forecasting models) each deployment target demands 
its own optimization. The .serva format dissolves these boundaries. When any data encodes 
into the universal representation, any model can consume it. The outputs of one model become 
valid inputs for another without translation overhead. The same model executes on datacenter 
GPUs, edge devices, and consumer hardware. True multimodality follows naturally when vision, 
language, audio, and sensor data all encode into the same representational space. The 
engineering nightmare of heterogeneous input fusion, the barrier stalling vision-language-action 
models across robotics, medical diagnostics, autonomous vehicles, and industrial automation, 
dissolves. 

The 80% of AI project effort consumed by data preparation exists because every project 
reinvents data handling from scratch [8]. Format conversion, cleaning pipelines, feature 
engineering, preprocessing scripts, each team builds these anew for each project and the 
tooling is constantly changing. Standardization using Serva Encoder as a general-purpose 
pre-processor dismantles this barrier. Teams focus on model architecture, training dynamics, 
and application logic rather than the plumbing connecting data to computation. The current 
landscape forces practitioners through an overwhelming matrix of choices, TensorFlow or 
PyTorch, NVIDIA or AMD, cloud or edge, FP32 or INT8, each decision constraining future 
options and cascading into incompatible toolchains. Servamind cuts through this fragmentation 
converting all steps to one step: encoding. Since the same .serva file operates across any 
framework, development cycles accelerate. The barrier between "having an idea" and "testing it 
on real data" compresses from weeks to hours. 

Current AI capability concentrates among organizations with significant resources to manage 
infrastructure complexity. Training frontier models requires not only compute budget but 
engineering talent to orchestrate distributed training, manage data pipelines, optimize for 
specific hardware, and navigate framework-specific quirks. This expertise is scarce and 
expensive. Servamind lowers these barriers systematically. When data handling reduces to a 
single encoding step, data engineering expertise becomes less critical. When efficiency gains 
are universal, optimization expertise matters less. When hardware agnosticism is real, 
infrastructure expertise becomes less differentiating. The result prohibits capable AI to become 
accessible to organizations without hyperscaler resources. Research labs, startups, universities, 
enterprises in developing economies all gain access to capabilities previously reserved for the 
largest technology companies. 

 

VI. Conclusion 
This paper began with a premise: any data to any model on any hardware. Our results derive 
from addressing root causes rather than symptoms. Data chaos and compute payload have 
persisted because they have been treated as separate problems. They are not. They are two 
expressions of a single architectural mismatch and they must be solved together.Our approach 
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describes a universal data format grounded in laser holography encoding principles (Serva 
Encoder), and a universal compute engine capable of transmuting any model architecture 
(Serva Chimera). It presented results: 30-374×+ energy efficiency improvements, 4-34× lossless 
storage compression, ~68× compute payload reduction, and early validation of the full pipeline. 

Efficiency is a consequence. Universality is the breakthrough. 

When data preparation collapses to a single encoding step, the 80% overhead disappears. 
When any model consumes any data, the one-to-one lock-in between dataset and architecture 
dissolves. When hardware becomes an implementation detail rather than an architectural 
constraint, capability distributes to whoever has ideas worth testing. The organizations that 
could never justify hyperscale infrastructure can now participate. The applications that were 
never economical become practical. The talent bottleneck loosens. 

AI has been constrained not by lack of intelligence but by lack of infrastructure. That constraint 
is now addressable. What gets built on this foundation by researchers, enterprises, and 
developers who today cannot participate will determine whether AI reaches its potential. 

The infrastructure is ready. The question becomes: what will you build?  
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