Business Whitepaper - 2026

LINK2AIL. Trust

Large language models have already established themselves in
personal information research and content production. However,
they cannot fully realize their potential for businesses due to their
inherent unreliability. This is exactly where LINK2AL.Trust comes in
— with anovel approach to safeguarding and optimization.

Situation

Time and again, we witness impressive capabilities of large language
models that were barely imaginable just a short time ago. Yet equally
often, we encounter glaring errors. This makes it difficult to assess
what the technology can practically be used for and inhibits its value-
creating deployment.

This starts with the topic of knowledge. By now, hardly anyone expects
reliable factual knowledge from language models, especially not rele-
vant specialized or domain knowledge. Instead, Retrieval-Augmented
Generation (RAG) has become established: External sources provide
the language model with the required facts, which it then merely
processes linguistically.

In many applications, the use of LLMs therefore focuses on commu-
nication. Their potential remains enormous — after all, they deliver
what computers have always lacked: a robust understanding of the
meaning of natural language in all its variations of expression, and the
ability to respond appropriately to unforeseen user inputs.

LINKZ2AI

Recent studies confirm that the economic
breakthrough of Al applications in Germany is
being massively held back.

The Liinendonk study "Al Transformation 2025"
identifies asignificant "PoC bottleneck": Around
70 percent of companies fail to transition their Al
prototypes (proofs of concept) into value-creating
production operation. Main causes: Lack of data
security and insufficient quality.

The "BCG Al Radar 2025" finds: In international
comparison, German companies are acting
particularly hesitantly — 62 percent of executives
express explicit concerns regarding security and
compliance — the highest figure among all
industrialized nations surveyed. This leads to
necessary investments being held back due to
uncertainties.



Problem Area: Quality

However, a great deal can also go wrong in communication — and this
is exactly what happens with language models on a regular basis.

One problem is that LLMs often exceed their authority. In dialogue,
they allow users to lead them into subject areas that fall outside their
actual scope of responsibility. Sometimes even into subject areas they
should definitely avoid in order not to expose the company to legal
difficulties.

Beyond that, they make pragmatic errors. They do not reliably fulfill
their actual function, fail to communicate in a goal-oriented manner,
or express themselves in ways that run counter to the operator's
interests.

Anotherriskis that language models fall for manipulation attempts.
Users can persuade or trick them into doing things that are notin the
company'sinterest — even when these actions have been explicitly
prohibited.

Problem Area: Security

In addition, significant security problems arise. Language models
frequently handle confidential information or critical actions care-
lessly. It can happen that sensitive user datais disclosed, or that
serious errors occur when writing to databases or sending emails.

These weaknesses can also be deliberately exploited. Such misbe-
havior can be provoked through attacks. The most well-known attack
vector is prompt injections, which now rank first on the OWASP list of
cyber threats for LLM-based systems.

Why LLMs Are So Unreliable

The cause of this unreliability lies in the very nature of language
models themselves. LLMs are statistical models. They represent
language, not knowledge. They have no genuine understanding of
roles in communication and no conception of the consequences of
linguistic actions.

At their core, language models do not even have a clear separation
between system instructions, data inputs, and user prompts.

When they produce something factually correct, when their output is
appropriate to the situation, or when they fend off an attack attempt,
these are always merely side effects of statistical frequency — side
effects that have been painstakingly nurtured into features through
extensive manual feedback.

GLINKZAI 2

For example, the chatbot of an insurance company
thatis supposed to help customers submit claims
and suddenly starts making medical diagnoses.

For example, the sales bot that fails to close deals
or even recommends competitors' products.

For example, the automated recruiting solution that
resourceful applicants simply instruct in their cover
letters to rank their application at the very top,
contrary to all selection criteria — or the sales bot that
customers persuade into granting absurd discounts.

For example, the personal assistant that fraudulent
websites trick into transmitting users' credit card
details to them.

OWASP. 2023. OWASP Top 10 for Large
Language Model Applications. Retrieved June 8,
2024 from https://owasp.org/www-project-
top-10-for-large-language-model-
applications/



Consequences

This unreliability is particularly critical in areas where LLM-based
applications make decisions or interact with other IT systems through
interfaces. Examplesinclude the automated evaluation of applicant
data or customer correspondence such as complaints and warranty
cases. Agent systems with high autonomy and many interfaces are
therefore applications with particularly high risk: significant economic
damages and compliance violations loom.

The same applies as soon as confidential customer or company datais
involved. But even simple chatbots that "only" provide information
carry dangers. They ultimately represent the company externally —
and the company isdirectly liable for their statements and actions.

As aresult, significant potential remains untapped. Many companies
hesitate to go beyond internal chatbot applications or to introduce
fully automated processes without human oversight. Even internal
systems are often not integrated because the Al is not trusted to
access an ERP system directly, for example.

What todo?
Analysis

First of all, we should know exactly the risks and potential attack
vectors of our application: External users? Sensitive data? External
content such as documents, emails, or websites? Or is the problem
thatemployees, simply by asking questions, are already disclosing
information so confidential that it should never be sent toan LLM in
the first place?

Beyond that, we should understand which triggers and factors make
things particularly difficult for the models. These include:

Conditional, situation-dependent instructions: "Always do X, unless
the situation requires something different." Particularly critical is the
conditional use or disclosure of information. "Use the following infor-
mation about salaries, sick days, bonus policies, etc. to provide HR
information to the respective employees — under no circumstances
make this information available to third parties."

Anotherrisk factor is limited authority. Often, a prohibited area of
action lies very close to the bot's actual task. Consistently maintaining
this boundary is extremely difficult for language models, especially
since users — usually completely unintentionally — repeatedly push
them toward these boundaries.

We must also repeatedly ask ourselves with many of our instructions
and expectations for the LLM: are we perhaps implicitly assuming
knowledge that the language model fundamentally cannot possess?

To avoid these pitfalls, we must keep language models on a tight
leash.

GLINKZAI 3

Thisis demonstrated by the precedent case of an
airline, where the company was held legally liable for
false Al-generated statements. See BBC: Airline held
liable for its chatbot giving passenger bad advice - wh
at this means for travellers. 23 February 2024

For example, when we technicallyinstruct an LLM to
"not jump to conclusions too quickly about a root
cause," we want to prevent the application from
producing unfounded diagnoses at the first mention of
asymptom. But of course there are exceptions: For
example, when users come with a clear error code.
However, recognizing when aroot cause is obvious is
inherently difficult foran LLM.

The aforementioned appointment assistant that
must under no circumstances make diagnoses, or
the information bot of a government agency that
must never provide legal advice.

Take asales bot that is not supposed to talk about
competitors. The difficulty: The model would have
torecognize on its own which products are from
competitors — atask for which itis hardly reliably
equipped. If we explicitly provide the LLM with the
competitors, we are back to a variant of
conditional use of information.



LINK2AI.Trust —=An Independent Review

What does "keeping on a tight leash" mean in practice? Similar to
dealing with an unreliable human helper, giving more instructions will
probably notimprove performance. Instead, we will strive for simple
and unambiguous instructions and clearly limit authority. But the
most important measure: We must consistently verify whether our
instructions are actually being followed.

How can this work for an Al application? Ideally, there is an instance
running in the background that continuously checks whether the Al's
current behavior meets expectations.

This is exactly where LINK2AL. Trust comes in. LINK2AIL. Trust runs
parallel to the application and assesses whether the output meets the
defined expectations — either formulated directly in the system
prompt or additionally stored as a guardrail.

During live operation, LINK2AI.Trust can detect and flag dangerous
interactions, so that problematic responses are not delivered or
harmful actions are not executed. When quality issues are detected,
the system can block, trigger a retry, or simply log the deviation to
enable continuous optimization.

LINK2AI. Trust —Automated Testing

Finally, we need to test appropriately. We must assume that any
change to an LLM-based application orits instructions can alter the
overall behavior. Cases that previously worked well can suddenly fail.
Instead of relying on binary pass/fail results, testing processes for
LLMs must be based on statistical metrics such as precision, recall, or

F1scores: metrics that show how well the system performs on average.

We therefore need extensive test data. But that's not all: we need the
ability to run these tests automatically with every change. This
requires the ability to automatically assess whether new results (with
new formulations) are safe and of good quality. This is where
LINK2AI.Trust's verification capabilities come into play once again.

This makes LINK2AI.Trust the ideal foundation for secure operation
and for targeted development.

Deep Dive

Verification mechanisms for safeguarding LLM applications can
essentially be assessed based on two key metrics: quality and time
required.

Similar to the Large Language Model (LLM) whose inputs or outputs
are being verified, the verification mechanisms themselves are

often heuristic methods. Their quality is measured by how well they
detect and prevent critical cases and real dangers without generating
an excessive number of false alarms. Every false alarm results in
actually harmless interactions being blocked or rejected, which

GLINKZAI 4

Optimization Safeguarding
3
v
c \ ——
S b ~X~
=} \ N
o )(J
g e sk st
o ~7 N,
Y\.,b,-\,.w“*"“"" N
S— pE— i - — \\ %
>
€ 5 st A LA e A DR AR 2 PO
@ ~
£ —)
% ey
©
>
u
o

Forcing the LLM "into the right corridor" — through
systematic verification and optimization of instruct-
tions, and through safeguarding, i.e., blocking
dangerous interactions.



directly impairs the user experience. A good verification method is
therefore characterized by a balanced ratio between a high detection
rate of actual risks and the lowest possible rate of false positives.

In addition to quality, the time required for verification plays a decisive
role, especially in applications with real-time user interaction. Security
mechanisms must not noticeably delay the response flow, at least not
for so-called normal interactions. Since these non-critical cases
constitute the vast majority of all requests in practice, it is essential
that obviously harmless interactions can be identified as quickly as
possible and "waved through" without unnecessary additional

checks.

We have seen: The range of potential problems —and thus the range
of safeguarding and optimization tasks — is vast. Sometimes we need
to check the input, sometimes the output. In some cases there are
clear, hard boundaries, as with much confidential information such as
access credentials or financial data. When it comes to the question of
whether the model adheres to its "business requirements," however,
things can become very fuzzy.

No single verification method can solve all these tasks equally well. For
effective safeguarding of LLM applications, text-based recognition of
known attacks is not sufficient. Equally, it makes little sense to make
every security decision exclusively by querying an LLM again: Such
approaches cause disproportionately high latency and costs, and are
moreover often subject to the same structural vulnerabilities as the
primary model itself.

LINK2AT. Trust —=An Open Platform

Various analysis modules evaluate an interaction from different
perspectives as needed. LINK2AI.Trust can check user input for
sensitive data / secrets and prevent transmission to the LLM. It
performs security checks on the input (e.g., prompt injections), but
also intensively examines the output — because successful attacks,
i.e.,those the LLM has fallen victim to, are the biggest problem. And
LINK2AI.Trust verifies alignment with your rules and guardrails — and
turns thisintoreliable quality assessments.

Looking Inside the Model: Attention and Trust
Scare

A particular strength of LINK2AI Trust lies in the use of attention-
based analysis methods. These allow us to look inside the model's
black box, so to speak. In LINK2AI.Trust, the prompt is divided into a
Trusted Part (e.g., system instructions and policies) and an Untrusted
Part (e.g., user inputs, external documents). From the so-called
attention signals, it can be derived how strongly the Trusted Part has
shaped the output. This produces a compact Trust Score that indicates
whether the applicationis "on track" — that is, remains aligned with
the parts of the system instructions that describe the application's
task as well as desired and undesired behavior — or whether an attack
or misalignment has taken control.

GLINKZAI 5

Secrets must be detected already in the input, whereas
for unprovoked misbehavior of the LLM, we need to
check the output. For detecting (successful) attacks, we
can check both input and output: A pure output check
fends off attacks but provides no information about
attack attempts; a pure input check cannot determine
whether a potentially manipulative instruction has
actually influenced the result.

Purely text-based detection (signatures, lists of
known attacks, or classifying models) often fails in
practice even with simple reformulations — natural
language s too variable for that. This s precisely
why many approaches unintentionallyendupina
race against ever-new prompt formulations.

List of modules:

. Prompt Injection Detection - Detection of
direct and indirect attacks and
manipulations

] Instruction Adherence - Analysis of the
extent to which the language model has
followed system instructions

. Jailbreak Detection - Detection of attempts
to circumvent the global alignment of the
language model

- General Request Metrics - Tracking of all
interactions and key KPls

Transformer models, on which LLMs are based, offer
a built-in mechanism through self-attention to
analyze which parts of the input were relevant for the
output.



The practical advantage: This approach does not rely on known attack
texts. In evaluation, it proved significantly more robust against
rephrased promptinjection variants than common text-based
detectors, for example. At the same time, this approach is conside-
rably faster and more resource-efficient than querying an LLM. This
makes it ideally suited as a first, rapid verification stage to detect
suspicious interactions early and only trigger more elaborate
verification mechanisms in justified cases.

Finally, this approachis also suitable for detecting LLM errors beyond
attacks. If a system instruction states, for example, "do not talk about
competitor products," but the response does so anyway, thisis nota
security incident, yet it still shows up in the attention values. In this
way, LINK2AI.Trust creates the foundation for secure, traceable, and
continuously improvable LLM applications.

Production Use: Also Works with Cloud LLMs

In many production setups, the required model-internal signals of a
proprietary cloud LLM are not directly accessible. LINK2AI.Trust has a
pragmatic solution for this: A secondary, smaller LLM (control model)
can be used to simulate the missing attention signals from the
generated response of the "main LLM." This way, the approach
remains applicable even when the "main LLM" is a black box.

Implementation

The process flow looks as follows:

@ LLMservice

Userinput

@ Context *

|

System Instructions
!
Prompt Injection
Dataleakage

LINK2AI
Log

:

LINK2AI.Trust can be integrated into an LLM application in such a way
thatinputs and/or outputs are verified without restructuring the
application's fundamental logic. In practice, there are two typical
patterns: Either LINK2AI.Trust is placed as a proxy in front of the actual
LLM call, or the application calls LINK2AI.Trust as a separate service —

OLINKZAI

1. Build request — The application creates the
LLM request from user input, context (e.g.,
documents, etc.), and system instructions. Input
and context can also be harmful or contain
secrets.

2. Input check — LINK2AI.Trust verifies whether
content must not be processed by the LLM
service according to definedrules (e.g., PIl,
passwords, tokens, etc.). If that is case,
transmission is blocked and a corresponding
error code is returned to the application.

3. Output check — The LLM generates the output,
whichis evaluated by LINK2AI.Trust for safety
and instruction adherence/quality.

4. Return with evaluation — LINK2AI.Trust
returns the output to the application, including a
safety and quality score. The decision whether to
block the response is up to the application

6



specifically forinput, output, or both. Both variants pursue the same
goal: detect risks early, handle them cleanly in case of emergency, and
at the same time provide measurable signals to systematically evolve
the application.

In terms of the process flow, this means: The application creates the
context for the LLM call as usual (user input, system instructions,
possibly documents or other sources). An input check can already
take place at this point. Subsequently, the requestis sentto the LLM,
theresponseis generated, and then the output is evaluated by
LINK2AI.Trust. This evaluation is returned to the application together
with the output, so that the application itself can decide how to react.

The input check is primarily about clear "hard stops": If there are
instructions or guardrails that certain information must not be sent to
an LLM — such as personal data, passwords, tokens, or other secrets —
LINK2AI.Trust can block the transmission and return an error code to
the application. The application can then, for example, display an
understandable error message, redact content and retry, or hand the
process over to an alternative workflow. The key point is: unwanted
processing of sensitive information should not only be noticed "after
the fact," but should never be sent to the LLM service in the first place.

The output check evaluates two dimensions that should deliberately
be treated differently in operation. First, the safety perspective: Does
the response violate safety instructions or contain potentially harmful
content? Such cases are typically "acute" and should lead to an imme-
diate reaction from the LLM application (e.g., block, defuse, escalate).
Second, the quality or adherence perspective: Does the model adhere
to the system instructions and the application's "business rules"? If a
system instruction states, for example, "Do not talk about competitor
products" and the response nevertheless addresses competitor
products, this is not a classic security incident — but it is poor quality
that can impair user experience, brand, or process integrity.

LINK2AI.Trust returns a Safety Score and a Quality Score together with
the LLM output for the interaction with the language model. How
these signals are handled is deliberately left in the hands of the LLM
application: from blocking to redacting to retry or human review.

Allinteractions are stored together with the analysis resultsin a log
datarepository. This isimportant for operations for two reasons:
First, safety-relevant anomalies can be traced and treated
asincidents. Second — and often even more valuable — the quality
signals enable continuous improvement of the application. While poor
safety scores typically require immediate intervention, deviations in
individual system instructions are often indications of which rules are
formulated unclearly, which contexts are problematic, or which cases
should be better tested in the future. This transforms "the Al is
inconsistent" into a traceable, data-driven improvement process
across prompts, updates, and releases.

For many teams, the easiest entry pointis the proxy mode: The LLM
endpointis accessed via LINK2AI.Trust, authentication is additionally
handled via a LINK2AI API token, and the response contains structured

GLINKZAI

5



analysis results alongside the LLM output. Alternatively, the service
mode offers maximum control, for example when input checks must
take place before the LLM call or when the application wants to trigger
different paths depending on the result. Currently, LINK2AIL Trust
supports text-based interactions; streaming is not yet covered in this
version.

Compliance

With the EU Al Act and other European as well as national regulations,
the requirements for the use of Al are increasing noticeably. Many
companies are uncertain which regulations apply when; and what
technical and organizational obligations arise from them for provi-
ders, integrators, and operators. One thing is clear: Without a robust
compliance strategy, the productive operation of Al solutions will not
be sustainably possible in many areas.

Itisimportant to note that in practice, a large part of the obligations
boils down to recurring core questions: Is the system controllable? Is
its behavior traceable? Are security and data protection risks being
controlled? And can all of this be demonstrated? This is exactly where
LINK2AI.Trust comes in. The platform specifically supports the
technical measures that are typically required in various regulatory
frameworks — depending on role and risk class: continuous quality
monitoring, protection against manipulation, enforcement of
requirements (policies/guardrails), as well as logging and auditability
in operation.

Depending on the use case, different regulatory frameworks may
becomerelevant. The EU Al Act addresses, among other things, risk-
based requirements, governance, and demonstrability. The GDPR
requires protection of personal data and principles such as data
minimization and purpose limitation. NIS2 tightens requirements for
cybersecurity and risk management in many companies and supply
chains. The Cyber Resilience Act (CRA) strengthens obligations for the
secure development and operation of digital products. LINK2AI.Trust
does notreplace legal assessment — but it helps to consistently
implement the technical requirements derived fromiit.

In practical terms, this means: LINK2AI.Trust can already prevent
sensitive information (e.g., personal data, passwords, tokens, internal
secrets) from being unintentionally transmitted to an LLM at the input
stage. On the output side, the platform assesses whether responses
violate safety requirements or internal policies; and whether the
model reliably adheres to system instructions. Both are central to
controlling risks in operation and securing the use of LLMs in regulated
or reputation-critical scenarios.

Another compliance-relevant component is traceability in operation:
LINK2AI.Trust stores interactions together with analysis resultsin a
log data repository. This creates reliable information about how the
application behaves over time, where deviations occur, and which
measures are effective. This supports both operational processes

GLINKZAI 8

Danger for the company
orinfrastructure

=4
A

Danger for the users

&



(incident handling) and the continuous improvement process that is
implicitly or explicitly required by many regulations.

For companies deploying GenAl productively, the pragmatic approach
is: first clarify which regulatory frameworks and roles (provider /
operator / integrator) are relevant, then factor in the technical
controls from the start, rather than "bolting them on" later.
LINK2AI.Trust provides the technical foundation for this: controllable
quality, secured interactions, and traceable evidence that can be
utilized throughout the entire lifecycle of an Al application.

GLINKZAI

9



