
 

 

 
 

 

 

Business Whitepaper - 2026 

LINK2AI.Trust 
 
Large language models have already established themselves in 
personal information research and content production. However, 
they cannot fully realize their potential for businesses due to their 
inherent unreliability. This is exactly where LINK2AI.Trust comes in 
– with a novel approach to safeguarding and optimization. 

Situation  
Time and again, we witness impressive capabilities of large language 
models that were barely imaginable just a short time ago. Yet equally 
often, we encounter glaring errors. This makes it difficult to assess 
what the technology can practically be used for and inhibits its value-
creating deployment. 

This starts with the topic of knowledge. By now, hardly anyone expects 
reliable factual knowledge from language models, especially not rele-
vant specialized or domain knowledge. Instead, Retrieval-Augmented 
Generation (RAG) has become established: External sources provide 
the language model with the required facts, which it then merely 
processes linguistically. 

In many applications, the use of LLMs therefore focuses on commu-
nication. Their potential remains enormous – after all, they deliver 
what computers have always lacked: a robust understanding of the 
meaning of natural language in all its variations of expression, and the 
ability to respond appropriately to unforeseen user inputs. 

  

Recent studies confirm that the economic 
breakthrough of AI applications in Germany is 
being massively held back. 
 
The Lünendonk study "AI Transformation 2025" 
identifies a significant "PoC bottleneck": Around 
70 percent of companies fail to transition their AI 
prototypes (proofs of concept) into value-creating 
production operation. Main causes: Lack of data 
security and insufficient quality. 

The "BCG AI Radar 2025" finds: In international 
comparison, German companies are acting 
particularly hesitantly – 62 percent of executives 
express explicit concerns regarding security and 
compliance – the highest figure among all 
industrialized nations surveyed. This leads to 
necessary investments being held back due to 
uncertainties. 
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Problem Area: Quality 

However, a great deal can also go wrong in communication – and this 
is exactly what happens with language models on a regular basis. 

One problem is that LLMs often exceed their authority. In dialogue, 
they allow users to lead them into subject areas that fall outside their 
actual scope of responsibility. Sometimes even into subject areas they 
should definitely avoid in order not to expose the company to legal 
difficulties. 

Beyond that, they make pragmatic errors. They do not reliably fulfill 
their actual function, fail to communicate in a goal-oriented manner, 
or express themselves in ways that run counter to the operator's 
interests. 

Another risk is that language models fall for manipulation attempts. 
Users can persuade or trick them into doing things that are not in the 
company's interest – even when these actions have been explicitly 
prohibited. 

Problem Area: Security 

In addition, significant security problems arise. Language models 
frequently handle confidential information or critical actions care-
lessly. It can happen that sensitive user data is disclosed, or that 
serious errors occur when writing to databases or sending emails. 

These weaknesses can also be deliberately exploited. Such misbe-
havior can be provoked through attacks. The most well-known attack 
vector is prompt injections, which now rank first on the OWASP list of 
cyber threats for LLM-based systems. 

Why LLMs Are So Unreliable 

The cause of this unreliability lies in the very nature of language 
models themselves. LLMs are statistical models. They represent 
language, not knowledge. They have no genuine understanding of 
roles in communication and no conception of the consequences of 
linguistic actions. 

At their core, language models do not even have a clear separation 
between system instructions, data inputs, and user prompts. 

When they produce something factually correct, when their output is 
appropriate to the situation, or when they fend off an attack attempt, 
these are always merely side effects of statistical frequency – side 
effects that have been painstakingly nurtured into features through 
extensive manual feedback. 

  

For example, the sales bot that fails to close deals 
or even recommends competitors' products. 

For example, the chatbot of an insurance company 
that is supposed to help customers submit claims 
and suddenly starts making medical diagnoses. 

For example, the automated recruiting solution that 
resourceful applicants simply instruct in their cover 
letters to rank their application at the very top, 
contrary to all selection criteria – or the sales bot that 
customers persuade into granting absurd discounts. 

For example, the personal assistant that fraudulent 
websites trick into transmitting users' credit card 
details to them. 

OWASP. 2023. OWASP Top 10 for Large 
Language Model Applications. Retrieved June 8, 
2024 from https://owasp.org/www-project-
top-10-for-large-language-model-
applications/ 
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Consequences 
This unreliability is particularly critical in areas where LLM-based 
applications make decisions or interact with other IT systems through 
interfaces. Examples include the automated evaluation of applicant 
data or customer correspondence such as complaints and warranty 
cases. Agent systems with high autonomy and many interfaces are 
therefore applications with particularly high risk: significant economic 
damages and compliance violations loom. 

The same applies as soon as confidential customer or company data is 
involved. But even simple chatbots that "only" provide information 
carry dangers. They ultimately represent the company externally – 
and the company is directly liable for their statements and actions. 

As a result, significant potential remains untapped. Many companies 
hesitate to go beyond internal chatbot applications or to introduce 
fully automated processes without human oversight. Even internal 
systems are often not integrated because the AI is not trusted to 
access an ERP system directly, for example. 

What to do? 
Analysis 

First of all, we should know exactly the risks and potential attack 
vectors of our application: External users? Sensitive data? External 
content such as documents, emails, or websites? Or is the problem 
that employees, simply by asking questions, are already disclosing 
information so confidential that it should never be sent to an LLM in 
the first place? 

Beyond that, we should understand which triggers and factors make 
things particularly difficult for the models. These include: 

Conditional, situation-dependent instructions: "Always do X, unless 
the situation requires something different." Particularly critical is the 
conditional use or disclosure of information. "Use the following infor-
mation about salaries, sick days, bonus policies, etc. to provide HR 
information to the respective employees – under no circumstances 
make this information available to third parties." 

Another risk factor is limited authority. Often, a prohibited area of 
action lies very close to the bot's actual task. Consistently maintaining 
this boundary is extremely difficult for language models, especially 
since users – usually completely unintentionally – repeatedly push 
them toward these boundaries. 

We must also repeatedly ask ourselves with many of our instructions 
and expectations for the LLM: are we perhaps implicitly assuming 
knowledge that the language model fundamentally cannot possess? 

To avoid these pitfalls, we must keep language models on a tight 
leash. 

This is demonstrated by the precedent case of an 
airline, where the company was held legally liable for 
false AI-generated statements. See BBC: Airline held 
liable for its chatbot giving passenger bad advice - wh
at this means for travellers. 23 February 2024  

 

For example, when we technically instruct an LLM to 
"not jump to conclusions too quickly about a root 
cause," we want to prevent the application from 
producing unfounded diagnoses at the first mention of 
a symptom. But of course there are exceptions: For 
example, when users come with a clear error code. 
However, recognizing when a root cause is obvious is 
inherently difficult for an LLM.  

 
The aforementioned appointment assistant that 
must under no circumstances make diagnoses, or 
the information bot of a government agency that 
must never provide legal advice. 

Take a sales bot that is not supposed to talk about 
competitors. The difficulty: The model would have 
to recognize on its own which products are from 
competitors – a task for which it is hardly reliably 
equipped. If we explicitly provide the LLM with the 
competitors, we are back to a variant of 
conditional use of information. 



 4 

LINK2AI.Trust – An Independent Review 
What does "keeping on a tight leash" mean in practice? Similar to 
dealing with an unreliable human helper, giving more instructions will 
probably not improve performance. Instead, we will strive for simple 
and unambiguous instructions and clearly limit authority. But the 
most important measure: We must consistently verify whether our 
instructions are actually being followed. 

How can this work for an AI application? Ideally, there is an instance 
running in the background that continuously checks whether the AI's 
current behavior meets expectations. 

This is exactly where LINK2AI.Trust comes in. LINK2AI.Trust runs 
parallel to the application and assesses whether the output meets the 
defined expectations – either formulated directly in the system 
prompt or additionally stored as a guardrail. 

During live operation, LINK2AI.Trust can detect and flag dangerous 
interactions, so that problematic responses are not delivered or 
harmful actions are not executed. When quality issues are detected, 
the system can block, trigger a retry, or simply log the deviation to 
enable continuous optimization. 

. 

LINK2AI.Trust – Automated Testing 
Finally, we need to test appropriately. We must assume that any 
change to an LLM-based application or its instructions can alter the 
overall behavior. Cases that previously worked well can suddenly fail. 
Instead of relying on binary pass/fail results, testing processes for 
LLMs must be based on statistical metrics such as precision, recall, or 
F1 scores: metrics that show how well the system performs on average. 

We therefore need extensive test data. But that's not all: we need the 
ability to run these tests automatically with every change. This 
requires the ability to automatically assess whether new results (with 
new formulations) are safe and of good quality. This is where 
LINK2AI.Trust's verification capabilities come into play once again. 

This makes LINK2AI.Trust the ideal foundation for secure operation 
and for targeted development. 

Deep Dive 
Verification mechanisms for safeguarding LLM applications can 
essentially be assessed based on two key metrics: quality and time 
required. 

Similar to the Large Language Model (LLM) whose inputs or outputs 
are being verified, the verification mechanisms themselves are 
often heuristic methods. Their quality is measured by how well they 
detect and prevent critical cases and real dangers without generating 
an excessive number of false alarms. Every false alarm results in 
actually harmless interactions being blocked or rejected, which 

Forcing the LLM "into the right corridor" – through 
systematic verification and optimization of instruct-
tions, and through safeguarding, i.e., blocking 
dangerous interactions. 
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directly impairs the user experience. A good verification method is 
therefore characterized by a balanced ratio between a high detection 
rate of actual risks and the lowest possible rate of false positives. 

In addition to quality, the time required for verification plays a decisive 
role, especially in applications with real-time user interaction. Security 
mechanisms must not noticeably delay the response flow, at least not 
for so-called normal interactions. Since these non-critical cases 
constitute the vast majority of all requests in practice, it is essential 
that obviously harmless interactions can be identified as quickly as 
possible and "waved through" without unnecessary additional 
checks. 

We have seen: The range of potential problems – and thus the range 
of safeguarding and optimization tasks – is vast. Sometimes we need 
to check the input, sometimes the output. In some cases there are 
clear, hard boundaries, as with much confidential information such as 
access credentials or financial data. When it comes to the question of 
whether the model adheres to its "business requirements," however, 
things can become very fuzzy. 

No single verification method can solve all these tasks equally well. For 
effective safeguarding of LLM applications, text-based recognition of 
known attacks is not sufficient. Equally, it makes little sense to make 
every security decision exclusively by querying an LLM again: Such 
approaches cause disproportionately high latency and costs, and are 
moreover often subject to the same structural vulnerabilities as the 
primary model itself. 

 LINK2AI.Trust – An Open Platform 
Various analysis modules evaluate an interaction from different 
perspectives as needed. LINK2AI.Trust can check user input for 
sensitive data / secrets and prevent transmission to the LLM. It 
performs security checks on the input (e.g., prompt injections), but 
also intensively examines the output – because successful attacks, 
i.e., those the LLM has fallen victim to, are the biggest problem. And 
LINK2AI.Trust verifies alignment with your rules and guardrails – and 
turns this into reliable quality assessments. 

 Looking Inside the Model: Attention and Trust 
Score 
A particular strength of LINK2AI.Trust lies in the use of attention-
based analysis methods. These allow us to look inside the model's 
black box, so to speak. In LINK2AI.Trust, the prompt is divided into a 
Trusted Part (e.g., system instructions and policies) and an Untrusted 
Part (e.g., user inputs, external documents). From the so-called 
attention signals, it can be derived how strongly the Trusted Part has 
shaped the output. This produces a compact Trust Score that indicates 
whether the application is "on track" – that is, remains aligned with 
the parts of the system instructions that describe the application's 
task as well as desired and undesired behavior – or whether an attack 
or misalignment has taken control. 

List of modules: 

▪ Prompt Injection Detection - Detection of 
direct and indirect attacks and 
manipulations 

▪ Instruction Adherence - Analysis of the 
extent to which the language model has 
followed system instructions 

▪ Jailbreak Detection - Detection of attempts 
to circumvent the global alignment of the 
language model 

▪ General Request Metrics - Tracking of all 
interactions and key KPIs 

 

Purely text-based detection (signatures, lists of 
known attacks, or classifying models) often fails in 
practice even with simple reformulations – natural 
language is too variable for that. This is precisely 
why many approaches unintentionally end up in a 
race against ever-new prompt formulations. 

Secrets must be detected already in the input, whereas 
for unprovoked misbehavior of the LLM, we need to 
check the output. For detecting (successful) attacks, we 
can check both input and output: A pure output check 
fends off attacks but provides no information about 
attack attempts; a pure input check cannot determine 
whether a potentially manipulative instruction has 
actually influenced the result. 

Transformer models, on which LLMs are based, offer 
a built-in mechanism through self-attention to 
analyze which parts of the input were relevant for the 
output. 
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The practical advantage: This approach does not rely on known attack 
texts. In evaluation, it proved significantly more robust against 
rephrased prompt injection variants than common text-based 
detectors, for example. At the same time, this approach is conside-
rably faster and more resource-efficient than querying an LLM. This 
makes it ideally suited as a first, rapid verification stage to detect 
suspicious interactions early and only trigger more elaborate 
verification mechanisms in justified cases. 

Finally, this approach is also suitable for detecting LLM errors beyond 
attacks. If a system instruction states, for example, "do not talk about 
competitor products," but the response does so anyway, this is not a 
security incident, yet it still shows up in the attention values. In this 
way, LINK2AI.Trust creates the foundation for secure, traceable, and 
continuously improvable LLM applications. 

Production Use: Also Works with Cloud LLMs 
In many production setups, the required model-internal signals of a 
proprietary cloud LLM are not directly accessible. LINK2AI.Trust has a 
pragmatic solution for this: A secondary, smaller LLM (control model) 
can be used to simulate the missing attention signals from the 
generated response of the "main LLM." This way, the approach 
remains applicable even when the "main LLM" is a black box. 

 

Implementation 
The process flow looks as follows: 

 

 

LINK2AI.Trust can be integrated into an LLM application in such a way 
that inputs and/or outputs are verified without restructuring the 
application's fundamental logic. In practice, there are two typical 
patterns: Either LINK2AI.Trust is placed as a proxy in front of the actual 
LLM call, or the application calls LINK2AI.Trust as a separate service – 

1. Build request – The application creates the 
LLM request from user input, context (e.g., 
documents, etc.), and system instructions. Input 
and context can also be harmful or contain 
secrets. 

2. Input check – LINK2AI.Trust verifies whether 
content must not be processed by the LLM 
service according to defined rules (e.g., PII, 
passwords, tokens, etc.). If that is case, 
transmission is blocked and a corresponding 
error code is returned to the application. 

3. Output check – The LLM generates the output, 
which is evaluated by LINK2AI.Trust for safety 
and instruction adherence/quality. 

4. Return with evaluation – LINK2AI.Trust 
returns the output to the application, including a 
safety and quality score. The decision whether to 
block the response is up to the application 
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specifically for input, output, or both. Both variants pursue the same 
goal: detect risks early, handle them cleanly in case of emergency, and 
at the same time provide measurable signals to systematically evolve 
the application. 

In terms of the process flow, this means: The application creates the 
context for the LLM call as usual (user input, system instructions, 
possibly documents or other sources). An input check can already 
take place at this point. Subsequently, the request is sent to the LLM, 
the response is generated, and then the output is evaluated by 
LINK2AI.Trust. This evaluation is returned to the application together 
with the output, so that the application itself can decide how to react. 

The input check is primarily about clear "hard stops": If there are 
instructions or guardrails that certain information must not be sent to 
an LLM – such as personal data, passwords, tokens, or other secrets – 
LINK2AI.Trust can block the transmission and return an error code to 
the application. The application can then, for example, display an 
understandable error message, redact content and retry, or hand the 
process over to an alternative workflow. The key point is: unwanted 
processing of sensitive information should not only be noticed "after 
the fact," but should never be sent to the LLM service in the first place. 

The output check evaluates two dimensions that should deliberately 
be treated differently in operation. First, the safety perspective: Does 
the response violate safety instructions or contain potentially harmful 
content? Such cases are typically "acute" and should lead to an imme-
diate reaction from the LLM application (e.g., block, defuse, escalate). 
Second, the quality or adherence perspective: Does the model adhere 
to the system instructions and the application's "business rules"? If a 
system instruction states, for example, "Do not talk about competitor 
products" and the response nevertheless addresses competitor 
products, this is not a classic security incident – but it is poor quality 
that can impair user experience, brand, or process integrity. 

LINK2AI.Trust returns a Safety Score and a Quality Score together with 
the LLM output for the interaction with the language model. How 
these signals are handled is deliberately left in the hands of the LLM 
application: from blocking to redacting to retry or human review. 

All interactions are stored together with the analysis results in a log 
data repository. This is important for operations for two reasons: 
First, safety-relevant anomalies can be traced and treated 
as incidents. Second – and often even more valuable – the quality 
signals enable continuous improvement of the application. While poor 
safety scores typically require immediate intervention, deviations in 
individual system instructions are often indications of which rules are 
formulated unclearly, which contexts are problematic, or which cases 
should be better tested in the future. This transforms "the AI is 
inconsistent" into a traceable, data-driven improvement process 
across prompts, updates, and releases. 

For many teams, the easiest entry point is the proxy mode: The LLM 
endpoint is accessed via LINK2AI.Trust, authentication is additionally 
handled via a LINK2AI API token, and the response contains structured 
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analysis results alongside the LLM output. Alternatively, the service 
mode offers maximum control, for example when input checks must 
take place before the LLM call or when the application wants to trigger 
different paths depending on the result. Currently, LINK2AI.Trust 
supports text-based interactions; streaming is not yet covered in this 
version. 

Compliance 
With the EU AI Act and other European as well as national regulations, 
the requirements for the use of AI are increasing noticeably. Many 
companies are uncertain which regulations apply when; and what 
technical and organizational obligations arise from them for provi-
ders, integrators, and operators. One thing is clear: Without a robust 
compliance strategy, the productive operation of AI solutions will not 
be sustainably possible in many areas. 

It is important to note that in practice, a large part of the obligations 
boils down to recurring core questions: Is the system controllable? Is 
its behavior traceable? Are security and data protection risks being 
controlled? And can all of this be demonstrated? This is exactly where 
LINK2AI.Trust comes in. The platform specifically supports the 
technical measures that are typically required in various regulatory 
frameworks – depending on role and risk class: continuous quality 
monitoring, protection against manipulation, enforcement of 
requirements (policies/guardrails), as well as logging and auditability 
in operation. 

Depending on the use case, different regulatory frameworks may 
become relevant. The EU AI Act addresses, among other things, risk-
based requirements, governance, and demonstrability. The GDPR 
requires protection of personal data and principles such as data 
minimization and purpose limitation. NIS2 tightens requirements for 
cybersecurity and risk management in many companies and supply 
chains. The Cyber Resilience Act (CRA) strengthens obligations for the 
secure development and operation of digital products. LINK2AI.Trust 
does not replace legal assessment – but it helps to consistently 
implement the technical requirements derived from it. 

In practical terms, this means: LINK2AI.Trust can already prevent 
sensitive information (e.g., personal data, passwords, tokens, internal 
secrets) from being unintentionally transmitted to an LLM at the input 
stage. On the output side, the platform assesses whether responses 
violate safety requirements or internal policies; and whether the 
model reliably adheres to system instructions. Both are central to 
controlling risks in operation and securing the use of LLMs in regulated 
or reputation-critical scenarios. 

Another compliance-relevant component is traceability in operation: 
LINK2AI.Trust stores interactions together with analysis results in a 
log data repository. This creates reliable information about how the 
application behaves over time, where deviations occur, and which 
measures are effective. This supports both operational processes 
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(incident handling) and the continuous improvement process that is 
implicitly or explicitly required by many regulations. 

For companies deploying GenAI productively, the pragmatic approach 
is: first clarify which regulatory frameworks and roles (provider / 
operator / integrator) are relevant, then factor in the technical 
controls from the start, rather than "bolting them on" later. 
LINK2AI.Trust provides the technical foundation for this: controllable 
quality, secured interactions, and traceable evidence that can be 
utilized throughout the entire lifecycle of an AI application. 

 


