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A B S T R A C T

Purpose: To discuss the worldwide applications and potential impact of artificial intelligence (AI) for the diag
nosis, management and analysis of treatment outcomes of common retinal diseases.
Methods: We performed an online literature review, using PubMed Central (PMC), of AI applications to evaluate 
and manage retinal diseases. Search terms included AI for screening, diagnosis, monitoring, management, and 
treatment outcomes for age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal surgery, 
retinal vascular disease, retinopathy of prematurity (ROP) and sickle cell retinopathy (SCR). Additional search 
terms included AI and color fundus photographs, optical coherence tomography (OCT), and OCT angiography 
(OCTA). We included original research articles and review articles.
Results: Research studies have investigated and shown the utility of AI for screening for diseases such as DR, 
AMD, ROP, and SCR. Research studies using validated and labeled datasets confirmed AI algorithms could 
predict disease progression and response to treatment. Studies showed AI facilitated rapid and quantitative 
interpretation of retinal biomarkers seen on OCT and OCTA imaging. Research articles suggest AI may be useful 
for planning and performing robotic surgery. Studies suggest AI holds the potential to help lessen the impact of 
socioeconomic disparities on the outcomes of retinal diseases.
Conclusions: AI applications for retinal diseases can assist the clinician, not only by disease screening and 
monitoring for disease recurrence but also in quantitative analysis of treatment outcomes and prediction of 
treatment response. The public health impact on the prevention of blindness from DR, AMD, and other retinal 
vascular diseases remains to be determined.

Introduction

Artificial intelligence (AI) permeates many aspects of everyday life, 
extending its reach to include the field of retina. AI algorithms include 
diagnosis, screening, assessment of disease activity, analysis of response 
to treatment and prediction of disease progression or treatment out
comes. The first paper demonstrating the clinical utility of deep learning 
for diagnosis diabetic retinopathy (DR) jolted the field. In this 2016 
paper, a Google Deep Mind deep learning algorithm, trained on labeled 
DR datasets, demonstrated high sensitivity, specificity and accuracy for 
detection of DR using color fundus photographs.1 The press speculated 
whether such an AI system could replace retina specialists. Then, in 
2018, the first autonomous DR screening system received Food and Drug 

Administration (FDA) clearance and became commercially available in 
the United States.2 Throughout the world, many AI systems are being 
developed and hold the potential for improved ocular healthcare and 
outcomes. Infrastructure, economic considerations, regulatory limita
tions, security considerations, and ethical considerations have slowed 
down the pace of implementation of AI applications.3,4 To date, AI has 
not replaced retina specialists. Rather, ophthalmologists consider AI as 
an assistive device for the detection or screening of retinal disease, 
analysis of treatment results, monitoring for recurrence of disease and 
prediction of progression or outcomes. This review will delve into each 
of these aspects. This article is not meant to be an exhaustive review, but 
rather highlights some retinal disease indications for which approved AI 
screening systems are in existence (DR), AI analysis algorithms exist or 
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are in development (AMD, ROP, SCR, surgery), or for which the authors 
have expertise (DR, AMD, SCR).

Screening for retinal disease

The need to screen for diseases such as DR and age-related macular 
degeneration (AMD) continues to significantly increase throughout the 
world, due to both population growth and increased longevity. Ac
cording to the International Diabetes Federation (IDRF), the prevalence 
of diabetes mellitus is projected to reach 700 million by 2045.5 Mean
while, half of the world’s population resides in Asia and the largest 
groups of DM patients are projected to be in China and India with 116 M 
and 77 M projected patients. The rise in human longevity combined with 
the increasing prevalence of DM and increasing population risk factors 
for DM related to improved socioeconomics is projected to increase the 
need for eye care substantially.5–7 Currently, DR is the fifth leading 
cause of blindness in the world.6 According to the Global Burden of 
Disease Study, for diabetic adults 50 years of age and older, the preva
lence of blindness and moderate or severe vision impairment from DR 
was 18.5 % in 2020. The highest DR prevalence was in Africa, North 
America, the Middle East, and North African continents.

At present, the rates of DR screening remain low, ranging on average 
from 30 to 50 %. These low screening rates contribute to a delay in the 
diagnosis and treatment of vision-threatening DR. This missed oppor
tunity to detect retinal disease earlier, when visual acuity is still good, 
contributes to poorer outcomes. Additionally, although up to half of 
diabetic patients fail to get an annual DR screening examination, 88 % of 
diabetic patients visit their primary care provider (PCP) at least once per 
year (US data). Offering DR screening exams at the PCP office also 
known as designated point of care screening could increase screening 
rates. Such a model could mitigate socioeconomic disparities, trans
portation issues, referral and follow-through issues, and partially over
come the shortage of eye care providers to perform screening in certain 
areas.8 In this setting, the ideal screening tool would have a very high 
sensitivity to detect referable DR and a high enough specificity to be 
clinically useful. A very high negative predictive value (NPV) is neces
sary for the system to be unlikely to miss the presence of referable DR. 
The resulting slightly higher rate of unnecessary referrals that accom
panies a lower specificity is an acceptable trade-off in order not to miss 
potentially blinding DR levels.

The shortage of eye care providers, worldwide, contributes to low 
screening rates for other retinal conditions. For example, an estimated 
25 % of AMD patients remains undiagnosed. In the United States (US), 
only 12 % of counties have a retinal specialist, and it is estimated that 
more than 110 million Americans require screening for AMD.9,10

Worldwide, the shortage of eye care providers hinders public health 
initiatives to screen for ocular disorders.9–11 The International Council 
of Ophthalmology (ICO) survey in 160 countries revealed the estimated 
global mean ophthalmologist density to be 31.7 per million population, 
with a range spanning from less than 1 ophthalmologist per million to 
182 per million. Furthermore, about 17 % of the global population in 
132 countries have access to less than 5 % of the global ophthalmologist 
population.9 Two-thirds of the global ophthalmologist population were 
located in only 13 countries (China, USA, India, Japan, Brazil, Russia, 
Germany, Italy, Egypt, France, Mexico, Spain and Poland). There is an 
opportunity for AI screening to provide a partial solution to the demand 
for ocular providers.

AI algorithms for detection and screening for DR, AMD, ROP, and 
sickle cell retinopathy exist but vary in the level of validation and 
applicability to large populations. AI systems have been validated across 
populations and approved for clinical use in DR screening. The 
commercially available systems include IDxDR (now Luminetics 
Core)12–14, EyeArt15,16 and AEye systems in the US, European Union 
(EU), Canada, and many other countries throughout the world. All of 
these systems have high sensitivity, specificity, accuracy, and userability 
that led to their approvals. In Singapore17,18 and South Korea,19,20

researchers have developed deep learning systems (DLS) that are being 
used in their public health systems to detect with high accuracy refer
able eye diseases such as glaucoma, AMD, and DR.

Table 1 outlines studies on autonomous systems approved for DR 
screening. These systems were evaluated on various datasets, and their 
performances were reported. In addition to these AI systems, smaller 
handheld systems and smartphone-based systems are being used and 
evaluated for DR screening. These devices have shown high rates of 
sensitivity, specificity, and userability. Some of these are self-contained 
and do not require the internet, which is practical for use in countries 
and remote areas where internet service is not readily available or 
reliable. These handheld systems have been evaluated and are being 
used in many parts of the world today, including China, Kenya, Zambia, 
and Thailand.

The first autonomous system approved for DR screening was the 
IDxDR, now known as Luminetics Core (Digital Diagnostics). The system 
was tested in primary care clinics in 900 asymptomatic patients who 
were 22 years of age or older without known DR.12 Subsequent algo
rithm enhancements led to increased sensitivity from 87.2 % initially for 
more than mild DR (mtmDR) to 100 %, and to 100 % sensitivity for 
vision threatening DR (vtDR). The improvements led to an increase in 
specificity from 90.7 % for more than mild DR (mtmDR) to 82 % for rDR 
and 95 % for vtDR.13 In younger patients, ages 5 to 21 years old, the SEE 
study showed 85.7 % sensitivity, 79.3 % specificity and 97.5 % image
ability in comparison to a retina specialist’s grading.14 This lower ac
curacy resulted in high rates of false positives because of the shiny ILM 
in young patients.

The EyeArt system was the second approved autonomous AI DR 
screening system. The clinical trial compared the AI detection of DR to 
that of a reading center grading of the fundus photograph. The patients 
underwent the imaging procedures in primary care, endocrinology, 
general ophthalmology and retina practices. Only patients 18 years of 
age or older and without a prior diagnosis of DR were included in the 
study. Various nonmydriatic cameras were used. The AI system had a 
sensitivity of 95.5 % and specificity of 86 % with high rates of image
ability.15 In a subgroup analysis, the AI system DR grading was 
compared to that done by ophthalmologists; the sensitivity for detection 
of rDR was 96 % for the AI system versus 20.7 % for general ophthal
mologists and 59.5 % for retina specialists. Of the falsely negative re
sults, none were vtDR for the Eyeart system or retina specialists, in 
contrast to 19 % for general ophthalmologists.16

The AEYE system was the third system approved in the US, although 
it was approved for use in the EU prior to the US. The AEYE system 
includes a desktop as well as a handheld camera version. The desktop 
sensitivity was 93 % and specificity was 91 %, as compared to 92 %− 93 
% sensitivity and 89 %− 94 % specificity for the handheld model.26

In Singapore, the national DR screening program, Singapore Inte
grated Diabetic Retinopathy Programme (SiDRP), created in 2010, 
provides primary care clinic-based telescreening for DR, AMD and 
glaucoma. A DLS system, SELENA, which was created in Singapore, has 
been in use for DR screening since 2019 as part of SiDRP. SELENA 
showed excellent diagnostic performance with high sensitivity and 
specificity for detection of referable and vision threatening DR, glau
coma and AMD.17,18 Using 494,661 images, the area under the curve 
(AUC) measurements for the DLS as compared with the ground truth 
were: 0.931 for AMD, 0.936 for DR and 0.942 for glaucoma. Further 
external validation showed similar results for detection of rDR in ten 
additional multiethnic datasets of populations with diabetes, including 
the community-based Guangdong dataset; the population-based 
Singapore Malay Eye Study, Singapore Chinese Study, Singapore In
dian Study, Beijing Eye Study, and African American Eye Disease Study; 
and the clinic-based studies from the Royal Victoria Eye and Ear Hos
pital, Mexican, Chinese University of Hong Kong, and University of 
Hong Kong.19

In SiDRP, nonmydriatic digital retinal images taken by a nurse 
practitioner are sent from the primary eye care clinic to a centralized 
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reading center, where a non-ophthalmologist assessor evaluates them 
for the presence of DR. In an economic analysis modelling study of 
39,006 DM patients in Singapore, using deterministic sensitivity ana
lyses, the least-expensive model was the semi-automated DLS model 
with a cost of $62 per person per year as compared to a fully human 
assessment model costing $77 per person per year and a fully automated 
DLS model costing $66 per person per year. Implementing such a system 
could result in $15 million potential annual cost savings in 2050 based 
on projected DM prevalence.19,20

Real-life deployment of AI systems holds lessons. The Google AI- 
based tool, Automated Retinal Disease Assessment (ARDA), had been 
trained on high-quality images and performed well during validation 
studies. When ARDA was deployed for DR screening in Thailand, the 
algorithm did not perform as well and many more ungradable images 
were reported. This was attributed to more low-quality images second
ary to dirty lenses, novice camera operators, or bright lighting that 
interfered with pupil dilatation.21

AI can impact the adherence with referrals for DR care. In the 
Rwanda Artificial Intelligence for Diabetic Retinopathy Screening 
(RAIDERS) study, AI was used to screen and detect DR in patients seen in 
a primary care clinic. Patients who required DR referral, based on the AI 
reading, were randomized (1:1) to either immediate notification of the 
need for referral or to delayed communication after a human grader read 
the image three to five days later. The immediate AI communication led 
to a higher adherence to referrals as compared with conventional 
grading by a human (51.5 % versus 39.6 %).23

In addition to these AI systems, there are smaller handheld systems 
and smartphone-based systems being used and evaluated for DR 
screening. These devices have shown high rates of sensitivity, specificity 
and userability.23–25 Some of these are self-contained and do not require 
the internet, which are practical for use in countries and remote areas 
where internet service is not readily available or reliable. These hand
held systems that have been evaluated are being used in many parts of 
the world today. In India, a low-cost Remidio Non-Mydriatic Fundus on 
Phone (Remidio Innovative Solutions Pvt Ltd) captures fundus images of 
the posterior pole, nasal, and temporal fields. These images are then 
subjected to automated analysis by the Medios AI (Remidio), which 
provides an offline automated analysis of the smartphone image for 
detection of rDR. A pilot study in India showed that the sensitivity and 
specificity for rDR were 100.0 % and 88.4 %, respectively, and the 
sensitivity and specificity for any DR were 85.2 % and 92.0 %, respec
tively.23 In Brazil, a smartphone-based hand-held device (Eyer, Phelcom 

Table 1 
Autonomous system approved for DR screening.

Study Data Results

IDxDR - Luminetics 
Core (Digital 
Diagnostics)

A) 900 asymptomatic 
patients aged 22 years or 
older.13

B) Patients aged 5 to 21 
years old.14

A) 87.2 % sensitivity, 
90.7 % specificity, and 96 
% imageability for more 
than mild DR (mtmDR), 
100 % sensitivity for 
vision-threatening DR 
(vtDR) and referable DR 
(rDR), 
82 % specificity for rDR 
and 95 % imageability for 
vtDR. 
B) SEE study showed 85.7 
% sensitivity, 79.3 % 
specificity, and 97.5 % 
imageability.

EyeArt15 A) Patients aged 18 years or 
older without a prior 
diagnosis of DR. 
B) Subgroup comparison of 
AI system compared to the 
gradings done by 
ophthalmologists.16

A) 95.5 % sensitivity and 
86 % specificity, with high 
rates of imageability. 
B) 96 % for AI versus 20.7 
% for general 
ophthalmologists and 
59.5 % for retina 
specialists.

AEYE A) Desktop camera: 
sensitivity 93 % and 
specificity 91 %.

B) Handheld camera: 92 
%− 93 % sensitivity 
and 89 %− 94 % 
specificity.

Singapore Integrated 
Diabetic 
Retinopathy 
Program (SiDRP)17, 

18

494,661 images; detecting 
DR (using 76,370 images), 
possible glaucoma (125,189 
images), and AMD (72,610 
images).

AUC for rDR was 0.936 
(95 % CI, 0.925 − 0.943), 
sensitivity was 90.5 % (95 
% CI, 87.3 %− 93.0 %), 
and specificity was 91.6 % 
(95 % CI, 91.0 %− 92.2 
%). AUC for vtDR was 
0.958 (95 % CI, 0.956 
− 0.961), sensitivity was 
100 % (95 % CI, 94.1 %−

100.0 %), and specificity 
was 91.1 % (95 % CI, 90.7 
%− 91.4 %). Further 
external validation for 
rDR showed similar 
results in ten additional 
multiethnic datasets of 
populations with diabetes.

SiDRP19,20 39,006 DM patients in 
Singapore.

Using deterministic 
sensitivity analyses, the 
least-expensive model was 
the semi-automated DLS 
model with a cost of $62 
per person per year as 
compared to a fully 
human assessment model 
costing $77 per person per 
year, and a fully 
automated DLS model 
costing $66 per person per 
year.

The Google AI-based 
tool, Automated 
Retinal Disease 
Assessment 
(ARDA)21

Trained on high-quality 
images and performed well 
during validation studies.

ARDA real world 
deployment for DR 
screening in Thailand 
showed many more 
ungradable images than in 
the original study. These 
were due to low-quality 
images secondary to dirty 
lenses, novice camera 
operators, or bright 
lighting that interfered 
with pupil dilatation.

Table 1 (continued )

Study Data Results

Rwanda Artificial 
Intelligence for 
Diabetic 
Retinopathy 
Screening 
(RAIDERS)22

DR patients requiring 
referral were randomized 
(1:1) to either immediate 
notification of the need for 
referral or to delayed 
communication after a 
human grader read the 
image 3 to 5 days later.

The immediate AI 
communication led to 
higher adherence to 
referrals compared with 
conventional grading by a 
human (51.5 % versus 
39.6 %).

Remidio Non- 
Mydriatic Fundus on 
Phone (Remidio 
Innovative Solutions 
Pvt Ltd)23

Fundus images (posterior 
pole, nasal, and temporal 
fields) subjected to 
automated analysis by the 
Medios AI (Remidio).

Sensitivity was 100 % and 
specificity was 88.4 % for 
rDR. 
Sensitivity was 85.2 % 
and specificity was 92.0 % 
for any DR.

Smartphone-based 
hand-held device 
(Eyer, Phelcom 
Technologies, São 
Carlos, Brazil)24

Two posterior segment 
images (one centered on the 
macula and another disc 
centered (45◦ field of view) 
after mydriasis).

DLS sensitivity was 97.8 
% and specificity was 
61.4 % with an AUC of 
0.89. The ungradability 
rate of images was 17.6 %.

AI system (Pegasus, 
Visulytix Ltd., UK)25

6404 patients, of whom 
approximately 80 % were 
diabetic and 65 % were 
female.

0.894 (95 % CI: 
88.0–90.7) area under the 
receiver operating 
characteristic (AUROC) 
for rDR.
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Technologies, São Carlos, Brazil) was used to capture two posterior 
segment images (one centered on macula and another disc centered (45◦

field of view)) after mydriasis induced by 1 % tropicamide eye-drops. 
The DR classification by the DLS algorithm (PhelcomNet) was 
compared to a reading center. The DLS sensitivity and specificity were 
97.8 % and 61.4 % with an AUC of 0.89. The ungradability rate of im
ages was 17.6 % in this study.24

An AI system (Pegasus, Visulytix Ltd.) for detecting rDR and PDR has 
been tested on images obtained with a 40-degree, nonmydriatic hand
held portable fundus camera (Mexican Advanced Imaging Laboratory 
for Ocular Research (MAILOR) cohort), and on images obtained with a 
mydriatic 50-degree desktop camera (Indian Diabetic Retinopathy 
image Dataset (IDRiD) benchmark cohort). The results were compared, 
and although the handheld images had less detail, the detection of rDR 
and PDR was good, with better accuracy for PDR than for rDR.25 For the 
handheld camera, sensitivity was 81.6 % and specificity was 81.7 % for 
rDR; sensitivity was 86.6 % and specificity was 87.7 % for PDR. For the 
desktop camera, sensitivity was 93.4 % and specificity was 94.2 % for 
rDR, both of which were greater than those using handheld images (P <
0.001). For the desktop camera, sensitivity was 83.7 % and specificity 
was 84.6 % for detecting PDR, which were not significantly different 
from the handheld camera values. This study shows that handheld 
cameras combined with AI could be used to screen patients in remote 
areas where there are shortages of eye care specialists.

The socioeconomic effectiveness and public health impact of AI 
screening systems are being evaluated. The Care Process for Preventing 
Vision Loss from Diabetes (CAREVL) used a Markov model to compare 
the effectiveness of point-of-care autonomous AI DR screening to in- 
office eye exams. The outcome was the prevention of severe vision 
loss by five years.27 The authors noted that the impact on vision depends 
on several factors, primarily DR prevalence, the AI system, access and 
adherence to recommended referrals, access and adherence to treat
ment/management recommendations, and care frictions/imperfections. 
They estimated that adherence with recommended metabolic recom
mendations would result in 110 per 100,000 fewer patients progressing 
to visual loss, and that adherence with ophthalmic treatments would 
result in 294 per 100,000 fewer patients progressing to visual loss. In 
their model, the use of AI combined with optimized care was estimated 
to result in 367 per 100,000 fewer patients progressing to visual loss. 
This would translate to 110,000 fewer patients with visual loss in the US, 
where there are 37 million diabetic patients.

A Markov model-based hybrid decision tree compared the costs, 
effectiveness, and incremental cost-effectiveness ratios (ICER) of AI 
screening, no screening, and ophthalmologist-based DR screening. The 
study found that AI screening was more cost-effective than conventional 
ophthalmologist-based screening. The ICER for AI screening was 
$180.19, compared to $215.05 for ophthalmologist-based screening. As 
expected, quality-adjusted life years (QALYs) were greater with AI 
screening compared to no screening.28

Aside from AI screening based upon fundus photographs, there is the 
potential to use OCT and OCTA images although higher costs of OCT and 
OCTA machines would limit widespread usage in the world. Nonethe
less, researchers have shown AI analysis of OCTA images can result in 
classification of DR stage. Refinements of AI analysis of OCTA images to 
utilize artery and vein differential analyses have been developed and 
have shown improved rates of DR classification.29–31 Similar studies 
found that better classification was also achieved with differential 
artery-vein analysis for SCR.32 A fully automated AI algorithm is avail
able to perform this analysis on OCTA images.33,34

There are fewer AI screening systems for AMD unlike for DR. As 
discussed earlier in this report, SELENA is a system currently in use to 
screen for DR, glaucoma, and AMD in Singapore. For the SELENA AMD 
deep learning model, referable AMD was defined as intermediate AMD 
(numerous medium-sized drusen, one large drusen, or non-central GA) 
and/or advanced AMD (central GA or nAMD). The AUC was 0.931 with 
a sensitivity of 93.2 % and specificity of 88.7 %.18

Currently, there are no approved AI AMD screening systems in the US 
and Europe. In the US, the Collaborative Communities for Ocular Im
aging (CCOI) AMD working group is working on the steps needed to 
develop an AI screening system for widespread use. The CCOI has 
identified the steps needed for development.35 Large datasets that have 
clear labeling, validation of the labeling, attached metadata, and are 
from a diverse population are needed. The AMD Benchmark Study is in 
progress.36

There are, however, algorithms that can classify AMD based on the 
AREDS severity score.37,38 DeepSeeNet, which is publicly available, 
simulates the human grading process. The algorithm first detects AMD 
risk factors, such as drusen size and pigmentary abnormalities for each 
eye, and then calculates a patient-based AMD severity score using the 
AREDS Simplified Severity Scale.37 The AUC were high for the detection 
of large drusen (0.94), pigmentary abnormalities (0.93), and late AMD 
(0.97). DeepSeeNet outperformed retinal specialists in the detection of 
large drusen (accuracy: 0.742 vs. 0.696; Cohen’s Kappa (κ): 0.601 vs. 
0.517) and pigmentary abnormalities (accuracy: 0.890 vs. 0.813; κ: 
0.723 vs. 0.535) but showed lower performance in the detection of late 
AMD (accuracy: 0.967 vs. 0.973; κ: 0.663 vs. 0.754).37 Such a system 
may be useful in assisting clinicians for the determination of AMD risk of 
progression.

AI systems can also identify GA with high accuracy and with an AUC 
that is non-inferior to retinal specialists.38,39 AI systems for GA are more 
useful for early detection of GA or nascent GA. AI systems are inherently 
faster than human graders. For example, when applied to the analysis of 
FAF images, the AI system could annotate the GA lesions within 6.06 s, 
compared to 1.04 min for human graders.

OCT images may also be used for AI-based AMD screening.40,41 OCT 
imaging can be used to differentiate AMD from DME and to differentiate 
AMD requiring treatment from less severe diseases.41 The CCOI AMD 
group has identified OCT as a useful test in concert with fundus images. 
The OCT is useful for the detection of high-risk AMD biomarkers as well 
as for the detection of late AMD (nAMD and GA).35

AI algorithms based on color fundus photos are also being developed 
for the screening and diagnosis of other retinal diseases, such as sickle 
cell retinopathy (SCR), retinopathy of prematurity (ROP), and other 
retinal conditions. The ROP screening system is probably the next sys
tem that will receive regulatory approval in the US. The potential global 
impact of such a system is great because ROP disproportionately affects 
infants in low- and middle-income countries. The CCOI ROP working 
group study validated a vascular severity scale to quantify ROP stage 
and plus disease, and demonstrated that a deep learning system for 
quantifying ROP stage was possible.42 Since then, several groups in the 
US, China, New Zealand, and Australia have developed automated AI 
systems for diagnosing plus disease in ROP.43 A multinational validation 
of an autonomous ROP screening system showed that the AI system 
performed well in detecting more than mild ROP (mtmROP).

The i-ROP Deep Learning system, developed by the Imaging and 
Informatics in ROP (i-ROP) consortium, outputs a continuous vascular 
severity score (VSS) ranging from 1 to 9, based on the learned proba
bility of consensus diagnosis of preplus or plus disease. A multinational 
validation of an autonomous ROP screening system showed that it 
performed well in detecting mtmROP and type 1 ROP.44 The AI system 
was trained and calibrated using 2530 examinations from 843 infants in 
the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) 
study, on two external datasets (6245 examinations from 1545 infants in 
the Stanford University Network for Diagnosis of ROP [SUNDROP] and 
5635 examinations from 2699 infants in the Aravind Eye Care Systems 
[AECS] telemedicine programs). The sensitivity and specificity were 
greater than 80 % for detection of mtmROP. Sensitivity was 100 % for 
detection of type 1 ROP (SUNDROP and AECS exams). Using such an AI 
system could result in a potential physician workload reduction of 80 %.

There is potential for the VSS to improve the precision and accuracy 
of diagnosing plus disease.45,46 Masked graders often disagreed with the 
original ROP screening examiner on the presence of type 1 ROP. The AI 
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system VSS could differentiate between type 1 and type 2 ROP disease 
and represents a solution to the subjectivity of the designation of plus 
disease and treatment-requiring ROP; the system could aid in the 
normalization of the assessment of ROP requiring treatment, which is 
currently very subjective.46

Another area in which AI may be useful is SCR. AI may help detect 
retinal neovascularization, often referred to as a “seafan”. An AI-based 
system would require widefield images, since seafans are usually 
located in the midperipheral to peripheral retina. Using 1182 ultra- 
widefield color fundus photographs from 190 patients with sickle cell 
hemoglobinopathy, a DLS algorithm achieved a sensitivity of 97.4 % and 
specificity of 97.0 % for detection of seafans.47 Another AI system has 
used OCTA images for classifying the level of SCR into early (stage 1 or 
2) or advanced (stage 3) stages with good accuracy.32

OCTA has also been used in creating AI systems for detection of other 
retinal diseases. Supervised machine learning, which uses OCTA fea
tures to train algorithms to identify SCR using OCTA images, has shown 
an average accuracy of 95 %. The AI could differentiate between mild 
sickle-cell retinopathy (stage II) and severe sickle-cell retinopathy (stage 
III) with an accuracy rate of 97 %.48 Quantitative analysis of the OCTA 
images have focused upon vascular parameters, such as blood vessel 
caliber (BVC), blood vessel tortuosity (BVT), perfusion intensity density 
(PID), blood vessel density (BVD), vessel area flux (VAF), vessel 
perimeter index (VPI) for diabetic retinopathy and on blood vessel tor
tuosity, blood vessel diameter, VPI, foveal avascular zone (FAZ) area, 
contour irregularity of FAZ and parafoveal avascular density for SCR 
classification.49 Using these parameters, machine learning algorithms 
could result in classification of control vs SCR, SCR mild vs SCR severe 
with high sensitivity (100 % and 97 % respectively), specificity (100 % 
and 95 % respectively) and accuracy (100 % and 97 % respectively).50

Artery-vein differentiation can further improve the classification 
accuracy.32

Use of both OCTA and fundus images as inputs to an AI system for the 
detection of polypoidal choroidal vasculopathy (PCV) was performed at 
Peking Union Medical College.51 Using OCT and fundus images pairs, 
the AI system had an accuracy of 87.4 %, with a sensitivity of 88.8 % and 
specificity of 95.6 %, demonstrating perfect agreement with the diag
nostic gold standard (κ = 0.828). This model outperformed the best 
expert in the diagnosis of PCV.

Assessment of retinal disease activity

Beyond detecting retina conditions, AI can aid in the assessment of 
treatment response using OCT-algorithms for detection of intraretinal, 
subretinal, and sub-retinal pigment epithelial (sub-RPE) fluid. OCT has 
allowed clinicians and researchers to assess biomarkers of disease ac
tivity such as intraretinal fluid (IRF), subretinal fluid (SRF), and pigment 
epithelial detachments (PED) in a variety of retinal pathologies 
including nAMD, DME, and retinal vein occlusion (RVO).52 These bio
markers are widely utilized in both clinical trials and clinical practice as 
it has been established that these anatomic findings correlate highly 
with functional outcomes.51

In clinical trials, assessment of the presence of fluid is commonly 
utilized as a secondary outcome in establishing the efficacy of a new 
therapeutic agent or intervention. Additionally, it can be used in 
defining rescue or retreatment criteria. Depending on the study design, 
evaluation for the presence of fluid is done by investigators or by the 
reading center. A study examining treatment decisions based on OCT 
fluid identification by investigators versus reading center graders in the 
Comparison of Age-Related Macular Degeneration Treatments Trials 
(CATT) showed that treating physicians’ and reading center’s fluid 
determination agreed in 72.1 % and disagreed in 27.9 % of visits.53 In 
fact, disagreement regarding fluid presence can exist even between 
expert reading center graders.54 Given how important proper fluid 
identification is, utilizing artificial intelligence (AI) to objectively 
identify, localize and quantify fluid is attractive.55

In addition, focus is not only placed on central retinal subfield 
thickness (CSFT) at the beginning and end of treatment but also on fluid 
fluctuations throughout the treatment course, as these fluctuations can 
affect visual outcomes. Post hoc analyses of nAMD clinical trials showed 
that greater variation in retinal thickness during treatment with anti- 
VEGF was associated with worse visual outcomes and development of 
fibrosis and macular atrophy.56 The data being generated by these an
alyses might lend itself for AI utilization.57,58

Furthermore, CSFT is insufficient as a sole biomarker for nAMD ac
tivity because it does not include extra-foveal locations of fluid. In 
addition, CSFT does not differentiate between the locations of fluid, such 
as IRF, SRF, sub-RPE fluid. A study comparing CSFT and fluid volume 
measurements has shown that patients with nAMD generally demon
strate the weakest association between CSFT and fluid volume mea
surements in the central 1 mm, as compared to DME and RVO patients.59

Instead, the location of the fluid, IRF, SRF or sub-RPE, has more impact 
on visual acuity. Several studies have shown that the presence of IRF 
leads to worse visual outcomes.60,61 In contrast, the relationship be
tween the presence of SRF and its implication for vision is not as clear. 
Small amounts of SRF are not incompatible with good visual 
outcomes.62–64

Besides the standard biomarkers of IRF and SRF, novel biomarkers 
are being identified. For instance, hyperreflective foci (HF) have been 
suggested as biomarkers for DME disease progression and treatment 
response.65 Subretinal hyperreflective material (SRHM) is being 
assessed in nAMD.66 AI may be a useful tool to quantify these bio
markers at baseline and to follow them over time. AI algorithms can 
perform this analysis in a fraction of the time required by trained human 
graders.67 Moreover, for clinical trials, AI carries the potential benefit of 
identifying at-risk populations and enriching recruitment.68

In clinical practice, the real-world outcomes have consistently been 
worse than those seen in clinical trials. Although the reasons might be 
multifactorial, it has been suggested that tolerance of fluid as well as the 
potential lack of bandwidth in a busy practice to analyze each OCT B- 
scan closely may contribute to undertreatment.55 In addition, AI, and in 
particular, generative adversarial networks (GAN), can also help predict 
response to treatment and to remove shadows in OCT images.69

AI interpretation of the type, location, and amount of OCT retinal 
fluid might be as good as or superior to human graders. In a study 
looking at the AREDS2–10 year SD-OCT scans for the presence and 
absence of IRF and SRF, assessments were done by investigators and 
Notal OCT Analyzer. The retinal specialists had imperfect accuracy and 
low sensitivity in detecting retinal fluid compared to the AI-based 
detection.70

In a clinical setting, the use of AI has been shown to demonstrate 
performance in making a referral recommendation that reaches or ex
ceeds that of experts on a range of sight-threatening retinal diseases.71

There are several ongoing studies evaluating the role of AI. The 
RAZORBILL study (NCT04662944) investigates the impact of advanced 
AI segmentation algorithms on the nAMD disease activity assessment by 
enriching three-dimensional OCT scans with automated fluid and layer 
quantification measurements.72

A prospective study using fluid monitoring (NCT05093374) is an 
example of ongoing trials using automated segmentation of retinal fluid 
volumes.68 In Europe, the Fluid Monitor (RetInSight) is an algorithm 
approved for the clinical monitoring of fluid in patients with nAMD. In 
the U.S., it is being used in investigational studies. The algorithm is 
linked to the Spectralis HEYEX 2 platform (Heidelberg Engineering) and 
will soon be linked to the Topcon Triton OCT and Cirrus OCT (Zeiss).73

Aside from the utilization of AI-based OCT assessments in clinical 
trials and clinical practice, AI-powered home OCT is a reality. The 
Scanly Home OCT device (Notal Vision, Manassas VA) is the first FDA- 
approved device, which allows patients to perform a home-based mac
ular scan. The scan is then sent to their physicians for evaluation of fluid 
in between office anti-VEGF treatments. This system could potentially 
shift the treatment paradigm from a “treat and extend” approach to a 

J.I. Lim et al.                                                                                                                                                                                                                                    



Asia-Pacific Journal of Ophthalmology 13 (2024) 100096

6

personalized “treat and observe” regimen. Such a system allows for 
continual monitoring for CNV recurrence and longer inter-visit in
tervals. Earlier disease detection of recurrent nAMD is theoretically 
possible.

The potential clinical utility in home OCT for treatment of nAMD is 
being investigated by the DRCR Retina Network protocol AO. Research 
is ongoing to determine the optimal threshold level of retinal thickness 
increase that should trigger a clinical alert to the physician. A potential 
pitfall of using home OCT is the lack of fundus imaging, which means 
small amounts of retinal hemorrhage may go undetected. In contrast, 
imaging in the clinic typically includes a retinal clinical exam, which can 
detect such issues.

Prior research on the home OCT has shown high rates for both pa
tient userability and retina scans with similar rates of retinal fluid 
detection as office-based OCT machines. The imaging success rate has 
been reported to range from 87 % to 93 %. In one study with an imaging 
success rate of 88 %, higher rates were found for patients with visual 
acuity greater than 20/320, with a 90 % success rate for VA > 20/320 
versus a 50 % success rate for VA < 20/320.74 In other studies, 86.5 % to 
93 % of scans were eligible for fluid quantification.75 When comparing 
in-office and home OCT performance, the positive and negative percent 
agreement rates for the presence of fluid by an expert grader were 98 % 
and 96 %, respectively. Quantitative agreement between Notal OCT 
Analyzer (NOA), a deep learning-based algorithm for automated esti
mation of fluid volumes, and manually graded outputs by an expert 
grader showed a Pearson correlation of 91.6 %.74 In another study, fluid 
assessments performed on the same day using in-office OCT and NOA on 
the home OCT scans showed that agreement was 96 %.75 Finally, cases 
where NOA estimated fluid to be greater than 10-nL were compared to 
in-office OCT scans; graders identified fluid on the in-office OCT in all 
cases, effectively demonstrating that there were no false positives.76

In summary, AI-based algorithms are able to identify the location, 
subtype, and fluctuations of essential OCT biomarkers, assist physicians 
in identifying patient subtypes for clinical trial recruitment, provide 
quantitative image analysis, and enable personalized clinical care.

Prediction of disease progression

AI deep learning algorithms can detect early AMD biomarkers 
associated with disease progression, such as pseudodrusen, intraretinal 
HF and hyporeflective cores.77 AI algorithms can predict the progression 
of drusen over time in AMD patients.78 More significantly, AI algorithms 
can also predict the likelihood of progression to late stages of AMD, GA 
or nAMD. For example, there is an AI algorithm that uses a two-step 
prediction model to accurately predict progression to late AMD within 
five years. The model, trained and tested on the AREDS2 dataset, uti
lized DeepSeeNet on color fundus photos to identify AMD features that 
increased the risk of AMD progression, and then combined patient de
mographic features to predict progression to late AMD.79 The C-statistic 
(representative of the AUC for binary outcomes) for AMD progression at 
five years from baseline was 0.84. Another study used the Moorfields 
database on patients with nAMD in one eye, and who also had OCTs of 
the fellow eye taken every one to twelve months, to create an algorithm 
that predicted development of nAMD in the fellow eye. This algorithm’s 
prediction of the risk of conversion of the fellow eye to nAMD within six 
months outperformed that of five out of six retinal specialists.80 In 
Europe, the GA Monitor is a commercial software (RetInSight) approved 
for use in OCT systems for GA monitoring. The GA Monitor quantitates 
the amount of photoreceptor loss (ellipsoid zone) and RPE loss and can 
track this over time in GA patients. It identifies patients who will be fast 
progressors on the basis of a single OCT at presentation.81 It is likely that 
other similar systems will gain approval for clinical use throughout the 
world for AMD and other retinal conditions.

Anti-VEGF treatment requirements and outcome predictions

AI applications have shown great promise not only in predicting 
progression of AMD but also in assisting in AMD treatment decisions. 
With the availability of high-resolution OCT data, detailing retinal 
structures and biomarkers, several AI applications and systems have 
been developed to assist clinicians in predicting anti-VEGF treatment 
requirements and clinical outcomes.82–84

AI-based systems developed with OCT can involve feature learning 
and/or deep learning. Feature learning includes predictions and classi
fications based on pre-determined extraction of biomarkers, such as 
fluid volume quantification, fibrovascular PED, subretinal hyper
reflective material and HF.68,83 Deep learning includes the ability of 
neural networks to differentiate between disease states and outcomes. 
Most AI systems have been developed using standardized clinical data
sets. It is important to note that all AI-based systems need to be validated 
on external patient populations, preferably using real-world data, to 
ensure generalizability, improve performance, and facilitate translation 
into clinical practice.

Predicting anti-VEGF treatment requirements

Predicting the required anti-VEGF treatment in patients with neo
vascular AMD may improve clinical management, ensure that patients 
are not undertreated, and improve visual outcomes. It can also provide 
information on the treatment disease burden. Treatment variability and 
undertreatment have been highlighted by several studies.85,86 Most 
importantly, initial vision gained may not be maintained over time in 
clinical practice.87 The ability to predict the required anti-VEGF treat
ment using AI-based approaches may help to identify patients who 
require a higher frequency of anti-VEGF injections versus those who 
require a lower frequency of injections. In addition, AI can also be used 
for treatment predictions over different time intervals. Most of these 
studies used clinical trial data to develop the AI prediction algorithms.

AI algorithms, using a machine learning approach, have classified 
patients into low and high treatment frequency.82 The HARBOR (Har
nessing Automatic Real-time Biomedical Observations and Responses) 
clinical trial dataset, which includes OCT features, visual acuity mea
surements, and demographic characteristics, was used to predict the 
anti-VEGF treatment burden over a two-year follow-up period. Patients 
were classified into low, medium and high injection requirements. 
Classification of high and low demonstrated an AUC of 0.7 and 0.77, 
respectively. The most relevant feature for treatment burden prediction 
was subretinal fluid volume in the central 3 mm; the highest predictive 
values were those at month 2.82 Other studies report AUCs of 0.77 and 
0.82 for predicting few or many injections, respectively,88 and for pre
dicting low or high demand in a treat-and-extend setting.89 While some 
researchers found OCT fluid, lesion characteristics and treatment tra
jectory in the first three months of treatment as important features,88

others were able to predict low demand at the first visit even before the 
first injection.89

Use of real-world data has enabled the development of a fully 
automated AI algorithm that enables probabilistic forecasting (providing 
uncertainty estimates) of future anti-VEGF treatment frequency.84 This 
system highlighted the most relevant imaging biomarkers for these 
predictions. They provided a measure of predictive uncertainty for each 
individual prediction (as illustrated in Fig. 1). The researchers extended 
the previously developed NGBoost algorithm90 with the addition of a 
negative binomial distribution as a probability distribution to 
adequately reflect the needed anti-VEGF injection frequency. Specif
ically, NGBoost allowed for the prediction of the injection frequency 
with a mean absolute error of 2.66 injections per year [2.31–3.01]. 
Feature importance analysis across the machine learning models 
revealed that the standard deviation of retinal pigment 
epithelium-drusen complex thickness in the central ETDRS subfield 
thickness was a top-ranked feature. Another important feature was the 
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standard deviation of the inner segment thickness as an inner nasal 
ETDRS (Early Treatment Diabetic Retinopathy Study) subfield. The 
probabilistic prediction of anti-VEGF treatment frequency was 
compared to other standard machine learning models, showing similar 
accuracy.

Fig. 1 shows the probabilistic forecasting for two representative pa
tients. For these patients, the forecasted distribution is very much 
coherent with the clinical imaging characteristics. The figure shows the 
central SD-OCT B-scan of two patients and the probabilistic forecast for 
the upcoming twelve months. The upper patient shows a type 1 CNV 
with no IRF and only subtle SRF (in neighboring B-scans). The predictive 
model predicts three to four injections per year for this eye (true number 
of required injections = 2). In contrast, the model predicts seven to eight 
injections per year for the eye of the lower patient, which is character
ized by marked IRF and SRF and a type 2 CNV membrane (true number 
of required injections = 10). This work highlights the potential of novel 
algorithms to inform clinical practice, facilitate patient scheduling, and 
identify patients who may benefit from long-acting treatment 
modalities.

In addition to utilizing machine and feature extraction learning 
methods, researchers have utilized a deep learning model to predict the 
burden of anti-VEGF injections.91 An end-to-end trainable densely 
connected neural network (DenseNet) and a recurrent neural network 
(RNN) were built by sampling 2D-OCT volume images. DenseNET 
learned retinal spatial features while the RNN integrated information 
from different time points. In a pro-re-nata (PRN) treatment regimen, 
the classification task obtained an accuracy of 0.85 in predicting patients 
with low and high treatment requirements.91

Predicting treatment outcomes

Recently, several machine and deep learning methods have been 
used to predict the response of patients with nAMD to anti-VEGF ther
apy. Outcomes included predicting visual acuity post anti-VEGF treat
ment at various time points and OCT features.92–96

Standard machine learning techniques using the LASSO feature 
learning model can predict visual acuity outcomes at three and twelve 
months after inputting data following three anti-VEGF treatments.92 The 
system had a mean absolute error of 5 letters in the 3-month prediction 
and 8 letters in the 12-month prediction. A 12-month AI tool may help 
improve adherence to treatment.92

Deep learning techniques were utilized in other studies to predict 
visual outcomes. One study evaluated the predictive ability of OCT 
imaging biomarkers for cross-sectional and future visual outcomes.93 AI 
deep learning algorithms automatically segmented OCT images and 
predicted visual acuity at distant time points up to twelve months. Most 
importantly, the study demonstrated that incremental changes in visual 
acuity after an injection can be predicted.93

Several other studies also utilized deep learning to predict visual 
outcomes, treatment response, OCT images, and to select choice of 
treatment.94–98 In one study, a novel convolutional network predicted 
the 12-month visual outcomes with an AUC of 0.989 and accuracy of 
0.936.94 Another study developed a deep learning architecture named 
sensitive structure guided network (SSG-Net) to predict short-term 
anti-VEGF treatment responder/non-responder patients based on OCT 
images.97 The model predicted the short-term efficacy of treatment with 
an accuracy of 84.6 %, AUC of 0.83, sensitivity of 0.692 and specificity 
of 1.97

A generative adversarial network model trained on OCT images was 
used to predict agent-specific short-term outcomes, specifically to 

Fig. 1. Figure from: Pfau M, Sahu S, Rupnow RA, Romond K, Millet D, Holz FG, Schmitz-Valckenberg S, Fleckenstein M, Lim JI, de Sisternes L, Leng T, Rubin DL, 
Hallak JA. Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration. Transl Vis Sci Technol. 2021 Jun 
1;10(7):30.
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predict the presence of retinal fluid after treatment.95 The system had 
higher sensitivity than human examiners to predict a difference in the 
efficacy in fluid resolution with anti-VEGF agents.98 Using real-world 
data, a machine learning model with computed OCT quantitative fea
tures could predict anti-VEGF treatment requirements, visual acuity and 
morphological outcomes.96 Best-corrected visual acuity at baseline was 
the most relevant predictive factor for 1-year visual acuity outcomes. 
Additionally, the system could predict the development of subretinal 
fibrosis with an AUC of 0.74.96

Lastly, synthetic image generation has also been proposed for AMD. 
A generative adversarial network generated and evaluated synthetic and 
individualized post-treatment OCT images that could predict short-term 
response after anti-VEGF therapy; 92 % of synthetic OCT images were of 
sufficient quality for clinical interpretation.98

The next phase of AI-based systems may include OCTA features, in 
addition to OCT B scans, to develop multimodal AI-based systems for 
treatment requirements and outcome prediction. Models may improve 
predictions by including a combination of imaging, demographic, and 
clinical information. In summary, AI technology may assist clinicians in 
customizing the number of injections needed and in selecting the 
medication most likely to resolve the nAMD features. This paves the 
pathway towards personalized medical management for nAMD. AI is 
also being applied to predict outcomes for other retinal diseases and 
holds promise for increasing the personalization of care for all patients.

Surgical applications

AI applications for retinal surgery include applications related to pre- 
operative, intraoperative and post-operative aspects. These applications 
continue to be developed and refined and there are not yet any regu
latory agency approved systems.99 Pre-operative applications include 
prediction of visual and anatomic outcomes after the surgical inter
vention.99–101 For example, a multicenter study using AI deep learning 
models to predict macular hole status after pars plana vitrectomy (PPVx) 
surgery with internal limiting membrane (ILM) peeing showed an 
overall accuracy of 84.7 % with an AUC of 89.32 %.100

Another study used a multimodal deep fusion network model 
(MDFN) to reliably predicted MH closure status (closed or open) one 
month after PPVx with ILM peeling, based on pre-operative macular 
OCT images and clinical data (including age, gender, duration of 
symptoms, minimal diameter of MH, base diameter of MH, height of 
hole, macular hole index, diameter hole index, hole form factor, and 
tractional hole index).101 The AUC of this MH status prediction model 
was 0.947.

Others have applied AI for prediction of outcomes after rhegmatog
enous retinal detachment repair.102 A multimodal fusion model using 
ultra-widefield fundus images, macular OCT images, age, gender, and 
pre-operative BCVA predicted post-operative visual acuity outcomes 
with an AUC of 0.91 with a mean accuracy of 0.86, sensitivity of 0.94, 
and specificity of 0.80. Not surprisingly, heatmaps revealed that the 
macular area for both OCT and ultra-widefield images was the most 
informative for model predictions.

AI holds potential applications in the performance of surgical 
procedures.103–110 Robotic assistance and guidance may enable tech
niques that have previously been unfeasible due to biological limitations 
and intrinsic hand tremors.103–105 Real-time instrument tracking, colli
sion avoidance and surgical education are other areas for which AI may 
hold significant impact.104–110 These applications could make surgery 
safer. Epiretinal membrane peeling, retinal vessel cannulation and 
subretinal gene therapy are some potential applications.

A robotic surgical system (Preceyes) was first used for human retinal 
surgery in nAMD patients with subretinal hemorrhage, which was 
treated with subretinal injections of recombinant tissue plasminogen 
activator (rt-PA).110 A surgeon used a remote z-axis control to guide the 
placement of a thin cannula through the retina and into the subretinal 
space to deliver the rt-PA. Such intraoperative applications illustrate the 

use of AI to improve surgical precision. Continued AI research applica
tions are needed not only for operative applications, but also for 
pre-operative and post-operative applications that will benefit the care 
of our surgical patients.

Federated learning

Development of AI systems is greatly facilitated by the ability to 
utilize validated datasets from several sources that include diverse pa
tient populations. Collaboration amongst investigators from different 
locations may be hindered by institutional concerns about internet se
curity as well as limitations regarding data access. Federated learning 
provides a collaborative framework in which AI training data is not 
exchanged. This overcomes limitations on data sharing, such as policy, 
security, and coalition constraints. Federated learning initially emerged 
in the field of communications to enhance the training of deep learning 
(DL) networks using decentralized data.111–113 Subsequently, it was 
adopted in the healthcare sector to enable multi-institutional training of 
models. This approach aims to develop powerful, accurate, safe, robust, 
and unbiased models while adhering to the Health Insurance Portability 
and Accountability Act (HIPAA), which mandates the confidential 
handling of protected health information.114 A notable development 
was the federated learning platform created for diagnosing COVID-19 
using computed tomography (CT) scans. This platform employed a 
three-dimensional dense CNN to provide a real-world, globally con
structed, and validated clinical tool for CT-based COVID-19 diagnosis, 
leveraging artificial intelligence.115

At its foundation, federated learning involves numerous nodes that 
collaboratively train a ML or DL model. Each node trains its model 
locally and shares its parameters using one of two common federated 
learning communication architectures: centralized or decentralized. In a 
centralized architecture, a server acts as an orchestrator, collecting 
model parameters or weights from each node, aggregating them, and 
then redistributing the updated parameters back to the nodes. In a 
decentralized architecture, each node directly passes its weights to 
another, allowing for direct updates to the global parameters by every 
node.116

Recently, several frameworks for developing federated learning al
gorithms, such as NVIDIA FLARE,117 Flower,118 and FedEYE119 have 
been developed. There are several challenges in applying federated 
learning in the medical domain such as model-aggregation policy, 
participation motivations, hardware or network condition. And more 
importantly, differences in image acquisition protocols and labeling 
methodologies across institutions which may lead to the generation of 
site-specific models that do not fit other sites well and contribute 
negatively to the global model.120

On the other hand, the benefits of federated learning are undeniable. 
The federated learning framework has the potential to link isolated 
medical institutions, hospitals, and devices, enabling sharing while 
ensuring privacy. As the number of wearable devices focused on public 
health increases, federated learning can leverage medical domain 
knowledge to personalize the global model for each medical institution 
and wearable device. Additionally, federated learning is scalable with 
minimal additional cost, allowing for the training of models using a 
diverse and augmented set of learning samples.121

Several studies have focused on developing model-aggregation pol
icies within a centralized architecture to address the challenges posed by 
non-independent and identically distributed (non-IID) data, as the 
quality of the federated learning model degrades if each federated 
learning node has a unique distribution of data.122 To create a more 
generalizable aggregation policy capable of handling heterogeneous 
data, researchers have proposed the use of reinforcement learning,123

contrastive learning,124 and new optimization methods.125

Studies on federated learning in ophthalmology support global 
health collaboration and offer a promising approach to privacy- 
preserving AI research. Using federated learning, it is possible to train 
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DL-derived ROP that can identify differences in clinical diagnoses and 
disease severity across institutions without sharing data. Federated 
learning could standardize clinical diagnoses and provide objective 
measurements for image-based diseases.126 Moreover, a trained feder
ated learning model performs comparably to a centralized model in 
classification, confirming that federated learning may provide an 
effective, more feasible solution for interinstitutional learning. Smaller 
institutions benefit more from collaboration than larger institutions, 
showing the potential of federated learning for addressing disparities in 
resource access.126,127

In addition, federated learning can enhance domain diversity and 
generalizability of models using OCT and OCTA images. Federated 
learning models achieve a AUROC comparable to that of the traditional 
DL models for microvasculature segmentation and rDR classification.128, 

129 Research on the feasibility of utilizing federated learning in identi
fying AMD demonstrated its practicality and benefits.120 Different ag
gregation policies—FedAvg, FedProx,129 FedMRI,130 and 
APFL131—alongside deep learning networks such as ResNet and Vision 
Transformers, proved useful.

More research is needed on implementing federated learning in 
healthcare. These areas include addressing current barriers to applying 
federated learning, making it a key strategy for preserving privacy in AI 
health research,132 and combining different data types for comprehen
sive disease diagnosis. There also exists a need to integrate federated 
learning with blockchain technology to enhance privacy, security, and 
efficiency.133

Conclusion

In summary, AI applications to the retinal field are myriad, ranging 
from screening and diagnosis to monitoring and predicting treatment 
response. AI holds the promise of streamlining the assessment of a pa
tient’s disease through rapid detection of biomarkers and computation 
of change over time. AI also improves the granularity of that assessment 
with quantitative data analysis of FAF, OCT, and OCTA parameters. AI 
will increase the personalization of treatment, enabling tailored treat
ment choices and treatment intervals that best address a particular pa
tient’s disease state. Not only medical retina patients, but also surgical 
retina patients, stand to benefit. In order to achieve this universality of 
benefits for all retina patients, worldwide collaboration remains para
mount. It is crucial to include a diverse population—considering race, 
ethnicity, geography, and socioeconomic factors—in the training of AI 
models. Striving for widespread collaboration and a culture of inclu
sivity will help ensure the applicability of AI algorithms for all members 
of the world.
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