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ARTICLE INFO ABSTRACT

Keywords: Purpose: To discuss the worldwide applications and potential impact of artificial intelligence (AI) for the diag-
Artificial intelligence nosis, management and analysis of treatment outcomes of common retinal diseases.

Algorithms Methods: We performed an online literature review, using PubMed Central (PMC), of Al applications to evaluate
:?Z:::Egrs and manage retinal diseases. Search terms included AI for screening, diagnosis, monitoring, management, and

treatment outcomes for age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal surgery,
retinal vascular disease, retinopathy of prematurity (ROP) and sickle cell retinopathy (SCR). Additional search
terms included AI and color fundus photographs, optical coherence tomography (OCT), and OCT angiography
(OCTA). We included original research articles and review articles.

Results: Research studies have investigated and shown the utility of Al for screening for diseases such as DR,
AMD, ROP, and SCR. Research studies using validated and labeled datasets confirmed AI algorithms could
predict disease progression and response to treatment. Studies showed Al facilitated rapid and quantitative
interpretation of retinal biomarkers seen on OCT and OCTA imaging. Research articles suggest Al may be useful
for planning and performing robotic surgery. Studies suggest AI holds the potential to help lessen the impact of
socioeconomic disparities on the outcomes of retinal diseases.

Conclusions: Al applications for retinal diseases can assist the clinician, not only by disease screening and
monitoring for disease recurrence but also in quantitative analysis of treatment outcomes and prediction of
treatment response. The public health impact on the prevention of blindness from DR, AMD, and other retinal
vascular diseases remains to be determined.

Deep learning

Introduction Administration (FDA) clearance and became commercially available in

the United States.? Throughout the world, many Al systems are being

Artificial intelligence (AI) permeates many aspects of everyday life,
extending its reach to include the field of retina. Al algorithms include
diagnosis, screening, assessment of disease activity, analysis of response
to treatment and prediction of disease progression or treatment out-
comes. The first paper demonstrating the clinical utility of deep learning
for diagnosis diabetic retinopathy (DR) jolted the field. In this 2016
paper, a Google Deep Mind deep learning algorithm, trained on labeled
DR datasets, demonstrated high sensitivity, specificity and accuracy for
detection of DR using color fundus photographs.’ The press speculated
whether such an Al system could replace retina specialists. Then, in
2018, the first autonomous DR screening system received Food and Drug

developed and hold the potential for improved ocular healthcare and
outcomes. Infrastructure, economic considerations, regulatory limita-
tions, security considerations, and ethical considerations have slowed
down the pace of implementation of Al applications.>* To date, Al has
not replaced retina specialists. Rather, ophthalmologists consider Al as
an assistive device for the detection or screening of retinal disease,
analysis of treatment results, monitoring for recurrence of disease and
prediction of progression or outcomes. This review will delve into each
of these aspects. This article is not meant to be an exhaustive review, but
rather highlights some retinal disease indications for which approved Al
screening systems are in existence (DR), Al analysis algorithms exist or
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are in development (AMD, ROP, SCR, surgery), or for which the authors
have expertise (DR, AMD, SCR).

Screening for retinal disease

The need to screen for diseases such as DR and age-related macular
degeneration (AMD) continues to significantly increase throughout the
world, due to both population growth and increased longevity. Ac-
cording to the International Diabetes Federation (IDRF), the prevalence
of diabetes mellitus is projected to reach 700 million by 2045.° Mean-
while, half of the world’s population resides in Asia and the largest
groups of DM patients are projected to be in China and India with 116 M
and 77 M projected patients. The rise in human longevity combined with
the increasing prevalence of DM and increasing population risk factors
for DM related to improved socioeconomics is projected to increase the
need for eye care substantially.”’ Currently, DR is the fifth leading
cause of blindness in the world.® According to the Global Burden of
Disease Study, for diabetic adults 50 years of age and older, the preva-
lence of blindness and moderate or severe vision impairment from DR
was 18.5 % in 2020. The highest DR prevalence was in Africa, North
America, the Middle East, and North African continents.

At present, the rates of DR screening remain low, ranging on average
from 30 to 50 %. These low screening rates contribute to a delay in the
diagnosis and treatment of vision-threatening DR. This missed oppor-
tunity to detect retinal disease earlier, when visual acuity is still good,
contributes to poorer outcomes. Additionally, although up to half of
diabetic patients fail to get an annual DR screening examination, 88 % of
diabetic patients visit their primary care provider (PCP) at least once per
year (US data). Offering DR screening exams at the PCP office also
known as designated point of care screening could increase screening
rates. Such a model could mitigate socioeconomic disparities, trans-
portation issues, referral and follow-through issues, and partially over-
come the shortage of eye care providers to perform screening in certain
areas.® In this setting, the ideal screening tool would have a very high
sensitivity to detect referable DR and a high enough specificity to be
clinically useful. A very high negative predictive value (NPV) is neces-
sary for the system to be unlikely to miss the presence of referable DR.
The resulting slightly higher rate of unnecessary referrals that accom-
panies a lower specificity is an acceptable trade-off in order not to miss
potentially blinding DR levels.

The shortage of eye care providers, worldwide, contributes to low
screening rates for other retinal conditions. For example, an estimated
25 % of AMD patients remains undiagnosed. In the United States (US),
only 12 % of counties have a retinal specialist, and it is estimated that
more than 110 million Americans require screening for AMD.”'°
Worldwide, the shortage of eye care providers hinders public health
initiatives to screen for ocular disorders.” ! The International Council
of Ophthalmology (ICO) survey in 160 countries revealed the estimated
global mean ophthalmologist density to be 31.7 per million population,
with a range spanning from less than 1 ophthalmologist per million to
182 per million. Furthermore, about 17 % of the global population in
132 countries have access to less than 5 % of the global ophthalmologist
population.” Two-thirds of the global ophthalmologist population were
located in only 13 countries (China, USA, India, Japan, Brazil, Russia,
Germany, Italy, Egypt, France, Mexico, Spain and Poland). There is an
opportunity for Al screening to provide a partial solution to the demand
for ocular providers.

Al algorithms for detection and screening for DR, AMD, ROP, and
sickle cell retinopathy exist but vary in the level of validation and
applicability to large populations. Al systems have been validated across
populations and approved for clinical use in DR screening. The
commercially available systems include IDxDR (now Luminetics
Core)'? 14, EyeArt1 516 and AEye systems in the US, European Union
(EU), Canada, and many other countries throughout the world. All of
these systems have high sensitivity, specificity, accuracy, and userability
that led to their approvals. In Singapore'”'® and South Korea,'®?
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researchers have developed deep learning systems (DLS) that are being
used in their public health systems to detect with high accuracy refer-
able eye diseases such as glaucoma, AMD, and DR.

Table 1 outlines studies on autonomous systems approved for DR
screening. These systems were evaluated on various datasets, and their
performances were reported. In addition to these Al systems, smaller
handheld systems and smartphone-based systems are being used and
evaluated for DR screening. These devices have shown high rates of
sensitivity, specificity, and userability. Some of these are self-contained
and do not require the internet, which is practical for use in countries
and remote areas where internet service is not readily available or
reliable. These handheld systems have been evaluated and are being
used in many parts of the world today, including China, Kenya, Zambia,
and Thailand.

The first autonomous system approved for DR screening was the
IDxDR, now known as Luminetics Core (Digital Diagnostics). The system
was tested in primary care clinics in 900 asymptomatic patients who
were 22 years of age or older without known DR.'? Subsequent algo-
rithm enhancements led to increased sensitivity from 87.2 % initially for
more than mild DR (mtmDR) to 100 %, and to 100 % sensitivity for
vision threatening DR (vtDR). The improvements led to an increase in
specificity from 90.7 % for more than mild DR (mtmDR) to 82 % for rDR
and 95 % for vtDR.'® In younger patients, ages 5 to 21 years old, the SEE
study showed 85.7 % sensitivity, 79.3 % specificity and 97.5 % image-
ability in comparison to a retina specialist’s grading.'* This lower ac-
curacy resulted in high rates of false positives because of the shiny ILM
in young patients.

The EyeArt system was the second approved autonomous Al DR
screening system. The clinical trial compared the Al detection of DR to
that of a reading center grading of the fundus photograph. The patients
underwent the imaging procedures in primary care, endocrinology,
general ophthalmology and retina practices. Only patients 18 years of
age or older and without a prior diagnosis of DR were included in the
study. Various nonmydriatic cameras were used. The Al system had a
sensitivity of 95.5 % and specificity of 86 % with high rates of image-
ability.'® In a subgroup analysis, the Al system DR grading was
compared to that done by ophthalmologists; the sensitivity for detection
of rDR was 96 % for the Al system versus 20.7 % for general ophthal-
mologists and 59.5 % for retina specialists. Of the falsely negative re-
sults, none were vtDR for the Eyeart system or retina specialists, in
contrast to 19 % for general ophthalmologists.'®

The AEYE system was the third system approved in the US, although
it was approved for use in the EU prior to the US. The AEYE system
includes a desktop as well as a handheld camera version. The desktop
sensitivity was 93 % and specificity was 91 %, as compared to 92 %—93
% sensitivity and 89 %—94 % specificity for the handheld model.?®

In Singapore, the national DR screening program, Singapore Inte-
grated Diabetic Retinopathy Programme (SiDRP), created in 2010,
provides primary care clinic-based telescreening for DR, AMD and
glaucoma. A DLS system, SELENA, which was created in Singapore, has
been in use for DR screening since 2019 as part of SiDRP. SELENA
showed excellent diagnostic performance with high sensitivity and
specificity for detection of referable and vision threatening DR, glau-
coma and AMD.'”'® Using 494,661 images, the area under the curve
(AUC) measurements for the DLS as compared with the ground truth
were: 0.931 for AMD, 0.936 for DR and 0.942 for glaucoma. Further
external validation showed similar results for detection of rDR in ten
additional multiethnic datasets of populations with diabetes, including
the community-based Guangdong dataset; the population-based
Singapore Malay Eye Study, Singapore Chinese Study, Singapore In-
dian Study, Beijing Eye Study, and African American Eye Disease Study;
and the clinic-based studies from the Royal Victoria Eye and Ear Hos-
pital, Mexican, Chinese University of Hong Kong, and University of
Hong Kong.19

In SiDRP, nonmydriatic digital retinal images taken by a nurse
practitioner are sent from the primary eye care clinic to a centralized
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Table 1

Autonomous system approved for DR screening.

Study

Data

Results

IDxDR - Luminetics
Core (Digital
Diagnostics)

EyeArt'®

AEYE

Singapore Integrated
Diabetic
Retinopathy
Program (SiDRP) 17
18

SiDRP'*?°

The Google Al-based
tool, Automated
Retinal Disease
Assessment
(ARDA)*!

A) 900 asymptomatic
patients aged 22 years or
older."

B) Patients aged 5 to 21
years old."*

A) Patients aged 18 years or
older without a prior
diagnosis of DR.

B) Subgroup comparison of
Al system compared to the
gradings done by
ophthalmologists.

16

494,661 images; detecting

DR (using 76,370 images),

possible glaucoma (125,189
images), and AMD (72,610
images).

39,006 DM patients in
Singapore.

Trained on high-quality
images and performed well
during validation studies.

A) 87.2 % sensitivity,
90.7 % specificity, and 96
% imageability for more
than mild DR (mtmDR),
100 % sensitivity for
vision-threatening DR
(vtDR) and referable DR
(rDR),

82 % specificity for rDR

and 95 % imageability for

vtDR.

B) SEE study showed 85.7

% sensitivity, 79.3 %

specificity, and 97.5 %

imageability.

A) 95.5 % sensitivity and

86 % specificity, with high

rates of imageability.

B) 96 % for Al versus 20.7

% for general

ophthalmologists and

59.5 % for retina

specialists.

A) Desktop camera:
sensitivity 93 % and
specificity 91 %.

B) Handheld camera: 92
%—93 % sensitivity
and 89 %—94 %
specificity.

AUC for rDR was 0.936

(95 % CI, 0.925 —0.943),

sensitivity was 90.5 % (95

% CI, 87.3 %—93.0 %),

and specificity was 91.6 %

(95 % CI, 91.0 %—92.2

%). AUC for vtDR was

0.958 (95 % CI, 0.956

—0.961), sensitivity was

100 % (95 % CI, 94.1 %—

100.0 %), and specificity

was 91.1 % (95 % CI, 90.7

%—91.4 %). Further

external validation for

rDR showed similar
results in ten additional
multiethnic datasets of
populations with diabetes.

Using deterministic

sensitivity analyses, the

least-expensive model was
the semi-automated DLS
model with a cost of $62
per person per year as
compared to a fully
human assessment model
costing $77 per person per
year, and a fully
automated DLS model
costing $66 per person per
year.

ARDA real world

deployment for DR

screening in Thailand
showed many more
ungradable images than in
the original study. These
were due to low-quality
images secondary to dirty
lenses, novice camera
operators, or bright
lighting that interfered
with pupil dilatation.

Table 1 (continued)
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Study

Data

Results

Rwanda Artificial
Intelligence for
Diabetic
Retinopathy
Screening
(RAIDERS)**

Remidio Non-
Mydriatic Fundus on
Phone (Remidio
Innovative Solutions
Pyt Ltd)**

Smartphone-based
hand-held device
(Eyer, Phelcom
Technologies, Sao
Carlos, Brazil)**

Al system (Pegasus,
Visulytix Ltd., UK)*®

DR patients requiring
referral were randomized
(1:1) to either immediate
notification of the need for
referral or to delayed
communication after a
human grader read the
image 3 to 5 days later.
Fundus images (posterior
pole, nasal, and temporal
fields) subjected to
automated analysis by the
Medios Al (Remidio).

Two posterior segment
images (one centered on the
macula and another disc
centered (45° field of view)
after mydriasis).

6404 patients, of whom
approximately 80 % were
diabetic and 65 % were
female.

The immediate Al
communication led to
higher adherence to
referrals compared with
conventional grading by a
human (51.5 % versus
39.6 %).

Sensitivity was 100 % and
specificity was 88.4 % for
rDR.

Sensitivity was 85.2 %
and specificity was 92.0 %
for any DR.

DLS sensitivity was 97.8
% and specificity was
61.4 % with an AUC of
0.89. The ungradability
rate of images was 17.6 %.
0.894 (95 % CIL:
88.0-90.7) area under the
receiver operating
characteristic (AUROC)

for rDR.

reading center, where a non-ophthalmologist assessor evaluates them
for the presence of DR. In an economic analysis modelling study of
39,006 DM patients in Singapore, using deterministic sensitivity ana-
lyses, the least-expensive model was the semi-automated DLS model
with a cost of $62 per person per year as compared to a fully human
assessment model costing $77 per person per year and a fully automated
DLS model costing $66 per person per year. Implementing such a system
could result in $15 million potential annual cost savings in 2050 based
on projected DM prevalence.'*?°

Real-life deployment of AI systems holds lessons. The Google Al-
based tool, Automated Retinal Disease Assessment (ARDA), had been
trained on high-quality images and performed well during validation
studies. When ARDA was deployed for DR screening in Thailand, the
algorithm did not perform as well and many more ungradable images
were reported. This was attributed to more low-quality images second-
ary to dirty lenses, novice camera operators, or bright lighting that
interfered with pupil dilatation.?’

Al can impact the adherence with referrals for DR care. In the
Rwanda Artificial Intelligence for Diabetic Retinopathy Screening
(RAIDERS) study, Al was used to screen and detect DR in patients seen in
a primary care clinic. Patients who required DR referral, based on the Al
reading, were randomized (1:1) to either immediate notification of the
need for referral or to delayed communication after a human grader read
the image three to five days later. The immediate Al communication led
to a higher adherence to referrals as compared with conventional
grading by a human (51.5 % versus 39.6 %).>

In addition to these Al systems, there are smaller handheld systems
and smartphone-based systems being used and evaluated for DR
screening. These devices have shown high rates of sensitivity, specificity
and userability.?* 2° Some of these are self-contained and do not require
the internet, which are practical for use in countries and remote areas
where internet service is not readily available or reliable. These hand-
held systems that have been evaluated are being used in many parts of
the world today. In India, a low-cost Remidio Non-Mydriatic Fundus on
Phone (Remidio Innovative Solutions Pvt Ltd) captures fundus images of
the posterior pole, nasal, and temporal fields. These images are then
subjected to automated analysis by the Medios AI (Remidio), which
provides an offline automated analysis of the smartphone image for
detection of rDR. A pilot study in India showed that the sensitivity and
specificity for rDR were 100.0 % and 88.4 %, respectively, and the
sensitivity and specificity for any DR were 85.2 % and 92.0 %, respec-
tively.?® In Brazil, a smartphone-based hand-held device (Eyer, Phelcom
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Technologies, Sao Carlos, Brazil) was used to capture two posterior
segment images (one centered on macula and another disc centered (45°
field of view)) after mydriasis induced by 1 % tropicamide eye-drops.
The DR classification by the DLS algorithm (PhelcomNet) was
compared to a reading center. The DLS sensitivity and specificity were
97.8 % and 61.4 % with an AUC of 0.89. The ungradability rate of im-
ages was 17.6 % in this study.”

An Al system (Pegasus, Visulytix Ltd.) for detecting rDR and PDR has
been tested on images obtained with a 40-degree, nonmydriatic hand-
held portable fundus camera (Mexican Advanced Imaging Laboratory
for Ocular Research (MAILOR) cohort), and on images obtained with a
mydriatic 50-degree desktop camera (Indian Diabetic Retinopathy
image Dataset (IDRiD) benchmark cohort). The results were compared,
and although the handheld images had less detail, the detection of rDR
and PDR was good, with better accuracy for PDR than for rDR.%° For the
handheld camera, sensitivity was 81.6 % and specificity was 81.7 % for
rDR; sensitivity was 86.6 % and specificity was 87.7 % for PDR. For the
desktop camera, sensitivity was 93.4 % and specificity was 94.2 % for
DR, both of which were greater than those using handheld images (P <
0.001). For the desktop camera, sensitivity was 83.7 % and specificity
was 84.6 % for detecting PDR, which were not significantly different
from the handheld camera values. This study shows that handheld
cameras combined with AI could be used to screen patients in remote
areas where there are shortages of eye care specialists.

The socioeconomic effectiveness and public health impact of Al
screening systems are being evaluated. The Care Process for Preventing
Vision Loss from Diabetes (CAREVL) used a Markov model to compare
the effectiveness of point-of-care autonomous AI DR screening to in-
office eye exams. The outcome was the prevention of severe vision
loss by five years.?” The authors noted that the impact on vision depends
on several factors, primarily DR prevalence, the Al system, access and
adherence to recommended referrals, access and adherence to treat-
ment/management recommendations, and care frictions/imperfections.
They estimated that adherence with recommended metabolic recom-
mendations would result in 110 per 100,000 fewer patients progressing
to visual loss, and that adherence with ophthalmic treatments would
result in 294 per 100,000 fewer patients progressing to visual loss. In
their model, the use of Al combined with optimized care was estimated
to result in 367 per 100,000 fewer patients progressing to visual loss.
This would translate to 110,000 fewer patients with visual loss in the US,
where there are 37 million diabetic patients.

A Markov model-based hybrid decision tree compared the costs,
effectiveness, and incremental cost-effectiveness ratios (ICER) of Al
screening, no screening, and ophthalmologist-based DR screening. The
study found that Al screening was more cost-effective than conventional
ophthalmologist-based screening. The ICER for Al screening was
$180.19, compared to $215.05 for ophthalmologist-based screening. As
expected, quality-adjusted life years (QALYs) were greater with Al
screening compared to no screening.*

Aside from Al screening based upon fundus photographs, there is the
potential to use OCT and OCTA images although higher costs of OCT and
OCTA machines would limit widespread usage in the world. Nonethe-
less, researchers have shown AI analysis of OCTA images can result in
classification of DR stage. Refinements of Al analysis of OCTA images to
utilize artery and vein differential analyses have been developed and
have shown improved rates of DR classification.’” >! Similar studies
found that better classification was also achieved with differential
artery-vein analysis for SCR.>? A fully automated Al algorithm is avail-
able to perform this analysis on OCTA images.>>>

There are fewer Al screening systems for AMD unlike for DR. As
discussed earlier in this report, SELENA is a system currently in use to
screen for DR, glaucoma, and AMD in Singapore. For the SELENA AMD
deep learning model, referable AMD was defined as intermediate AMD
(numerous medium-sized drusen, one large drusen, or non-central GA)
and/or advanced AMD (central GA or nAMD). The AUC was 0.931 with
a sensitivity of 93.2 % and specificity of 88.7 %.'®
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Currently, there are no approved AI AMD screening systems in the US
and Europe. In the US, the Collaborative Communities for Ocular Im-
aging (CCOI) AMD working group is working on the steps needed to
develop an Al screening system for widespread use. The CCOI has
identified the steps needed for development.®” Large datasets that have
clear labeling, validation of the labeling, attached metadata, and are
from a diverse population are needed. The AMD Benchmark Study is in
progress.>°

There are, however, algorithms that can classify AMD based on the
AREDS severity score.’”*® DeepSeeNet, which is publicly available,
simulates the human grading process. The algorithm first detects AMD
risk factors, such as drusen size and pigmentary abnormalities for each
eye, and then calculates a patient-based AMD severity score using the
AREDS Simplified Severity Scale.®” The AUC were high for the detection
of large drusen (0.94), pigmentary abnormalities (0.93), and late AMD
(0.97). DeepSeeNet outperformed retinal specialists in the detection of
large drusen (accuracy: 0.742 vs. 0.696; Cohen’s Kappa (x): 0.601 vs.
0.517) and pigmentary abnormalities (accuracy: 0.890 vs. 0.813; k:
0.723 vs. 0.535) but showed lower performance in the detection of late
AMD (accuracy: 0.967 vs. 0.973; k: 0.663 vs. 0.754).%” Such a system
may be useful in assisting clinicians for the determination of AMD risk of
progression.

Al systems can also identify GA with high accuracy and with an AUC
that is non-inferior to retinal specialists.*®*” Al systems for GA are more
useful for early detection of GA or nascent GA. Al systems are inherently
faster than human graders. For example, when applied to the analysis of
FAF images, the Al system could annotate the GA lesions within 6.06 s,
compared to 1.04 min for human graders.

OCT images may also be used for Al-based AMD screening.*>*! OCT
imaging can be used to differentiate AMD from DME and to differentiate
AMD requiring treatment from less severe diseases.”' The CCOI AMD
group has identified OCT as a useful test in concert with fundus images.
The OCT is useful for the detection of high-risk AMD biomarkers as well
as for the detection of late AMD (nAMD and GA).>®

Al algorithms based on color fundus photos are also being developed
for the screening and diagnosis of other retinal diseases, such as sickle
cell retinopathy (SCR), retinopathy of prematurity (ROP), and other
retinal conditions. The ROP screening system is probably the next sys-
tem that will receive regulatory approval in the US. The potential global
impact of such a system is great because ROP disproportionately affects
infants in low- and middle-income countries. The CCOI ROP working
group study validated a vascular severity scale to quantify ROP stage
and plus disease, and demonstrated that a deep learning system for
quantifying ROP stage was possible.*? Since then, several groups in the
US, China, New Zealand, and Australia have developed automated Al
systems for diagnosing plus disease in ROP.** A multinational validation
of an autonomous ROP screening system showed that the AI system
performed well in detecting more than mild ROP (mtmROP).

The i-ROP Deep Learning system, developed by the Imaging and
Informatics in ROP (i-ROP) consortium, outputs a continuous vascular
severity score (VSS) ranging from 1 to 9, based on the learned proba-
bility of consensus diagnosis of preplus or plus disease. A multinational
validation of an autonomous ROP screening system showed that it
performed well in detecting mtmROP and type 1 ROP.** The Al system
was trained and calibrated using 2530 examinations from 843 infants in
the Imaging and Informatics in Retinopathy of Prematurity (i-ROP)
study, on two external datasets (6245 examinations from 1545 infants in
the Stanford University Network for Diagnosis of ROP [SUNDROP] and
5635 examinations from 2699 infants in the Aravind Eye Care Systems
[AECS] telemedicine programs). The sensitivity and specificity were
greater than 80 % for detection of mtmROP. Sensitivity was 100 % for
detection of type 1 ROP (SUNDROP and AECS exams). Using such an Al
system could result in a potential physician workload reduction of 80 %.

There is potential for the VSS to improve the precision and accuracy
of diagnosing plus disease.”>*® Masked graders often disagreed with the
original ROP screening examiner on the presence of type 1 ROP. The Al
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system VSS could differentiate between type 1 and type 2 ROP disease
and represents a solution to the subjectivity of the designation of plus
disease and treatment-requiring ROP; the system could aid in the
normalization of the assessment of ROP requiring treatment, which is
currently very subjective.*°

Another area in which AI may be useful is SCR. Al may help detect
retinal neovascularization, often referred to as a “seafan”. An Al-based
system would require widefield images, since seafans are usually
located in the midperipheral to peripheral retina. Using 1182 ultra-
widefield color fundus photographs from 190 patients with sickle cell
hemoglobinopathy, a DLS algorithm achieved a sensitivity of 97.4 % and
specificity of 97.0 % for detection of seafans.”” Another Al system has
used OCTA images for classifying the level of SCR into early (stage 1 or
2) or advanced (stage 3) stages with good accuracy.*”

OCTA has also been used in creating Al systems for detection of other
retinal diseases. Supervised machine learning, which uses OCTA fea-
tures to train algorithms to identify SCR using OCTA images, has shown
an average accuracy of 95 %. The Al could differentiate between mild
sickle-cell retinopathy (stage II) and severe sickle-cell retinopathy (stage
III) with an accuracy rate of 97 %.*® Quantitative analysis of the OCTA
images have focused upon vascular parameters, such as blood vessel
caliber (BVC), blood vessel tortuosity (BVT), perfusion intensity density
(PID), blood vessel density (BVD), vessel area flux (VAF), vessel
perimeter index (VPI) for diabetic retinopathy and on blood vessel tor-
tuosity, blood vessel diameter, VPI, foveal avascular zone (FAZ) area,
contour irregularity of FAZ and parafoveal avascular density for SCR
classification.*® Using these parameters, machine learning algorithms
could result in classification of control vs SCR, SCR mild vs SCR severe
with high sensitivity (100 % and 97 % respectively), specificity (100 %
and 95 % respectively) and accuracy (100 % and 97 % respectively).*’
Artery-vein differentiation can further improve the classification
accuracy.*?

Use of both OCTA and fundus images as inputs to an Al system for the
detection of polypoidal choroidal vasculopathy (PCV) was performed at
Peking Union Medical College.”’ Using OCT and fundus images pairs,
the AI system had an accuracy of 87.4 %, with a sensitivity of 88.8 % and
specificity of 95.6 %, demonstrating perfect agreement with the diag-
nostic gold standard (x = 0.828). This model outperformed the best
expert in the diagnosis of PCV.

Assessment of retinal disease activity

Beyond detecting retina conditions, Al can aid in the assessment of
treatment response using OCT-algorithms for detection of intraretinal,
subretinal, and sub-retinal pigment epithelial (sub-RPE) fluid. OCT has
allowed clinicians and researchers to assess biomarkers of disease ac-
tivity such as intraretinal fluid (IRF), subretinal fluid (SRF), and pigment
epithelial detachments (PED) in a variety of retinal pathologies
including nAMD, DME, and retinal vein occlusion (RV0).”? These bio-
markers are widely utilized in both clinical trials and clinical practice as
it has been established that these anatomic findings correlate highly
with functional outcomes.”’

In clinical trials, assessment of the presence of fluid is commonly
utilized as a secondary outcome in establishing the efficacy of a new
therapeutic agent or intervention. Additionally, it can be used in
defining rescue or retreatment criteria. Depending on the study design,
evaluation for the presence of fluid is done by investigators or by the
reading center. A study examining treatment decisions based on OCT
fluid identification by investigators versus reading center graders in the
Comparison of Age-Related Macular Degeneration Treatments Trials
(CATT) showed that treating physicians’ and reading center’s fluid
determination agreed in 72.1 % and disagreed in 27.9 % of visits.’® In
fact, disagreement regarding fluid presence can exist even between
expert reading center graders.”® Given how important proper fluid
identification is, utilizing artificial intelligence (AI) to objectively
identify, localize and quantify fluid is attractive.”
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In addition, focus is not only placed on central retinal subfield
thickness (CSFT) at the beginning and end of treatment but also on fluid
fluctuations throughout the treatment course, as these fluctuations can
affect visual outcomes. Post hoc analyses of nAMD clinical trials showed
that greater variation in retinal thickness during treatment with anti-
VEGF was associated with worse visual outcomes and development of
fibrosis and macular atrophy.”® The data being generated by these an-
alyses might lend itself for AI utilization.””->®

Furthermore, CSFT is insufficient as a sole biomarker for nAMD ac-
tivity because it does not include extra-foveal locations of fluid. In
addition, CSFT does not differentiate between the locations of fluid, such
as IRF, SRF, sub-RPE fluid. A study comparing CSFT and fluid volume
measurements has shown that patients with nAMD generally demon-
strate the weakest association between CSFT and fluid volume mea-
surements in the central 1 mm, as compared to DME and RVO patients.””
Instead, the location of the fluid, IRF, SRF or sub-RPE, has more impact
on visual acuity. Several studies have shown that the presence of IRF
leads to worse visual outcomes.®®®! In contrast, the relationship be-
tween the presence of SRF and its implication for vision is not as clear.
Small amounts of SRF are not incompatible with good visual
outcomes.®? %

Besides the standard biomarkers of IRF and SRF, novel biomarkers
are being identified. For instance, hyperreflective foci (HF) have been
suggested as biomarkers for DME disease progression and treatment
response.’” Subretinal hyperreflective material (SRHM) is being
assessed in nAMD.®® AI may be a useful tool to quantify these bio-
markers at baseline and to follow them over time. Al algorithms can
perform this analysis in a fraction of the time required by trained human
graders.67 Moreover, for clinical trials, Al carries the potential benefit of
identifying at-risk populations and enriching recruitment.®®

In clinical practice, the real-world outcomes have consistently been
worse than those seen in clinical trials. Although the reasons might be
multifactorial, it has been suggested that tolerance of fluid as well as the
potential lack of bandwidth in a busy practice to analyze each OCT B-
scan closely may contribute to undertreatment.”” In addition, AL and in
particular, generative adversarial networks (GAN), can also help predict
response to treatment and to remove shadows in OCT images.®’

Al interpretation of the type, location, and amount of OCT retinal
fluid might be as good as or superior to human graders. In a study
looking at the AREDS2-10 year SD-OCT scans for the presence and
absence of IRF and SRF, assessments were done by investigators and
Notal OCT Analyzer. The retinal specialists had imperfect accuracy and
low sensitivity in detecting retinal fluid compared to the Al-based
detection.”®

In a clinical setting, the use of AI has been shown to demonstrate
performance in making a referral recommendation that reaches or ex-
ceeds that of experts on a range of sight-threatening retinal diseases.”"
There are several ongoing studies evaluating the role of AI. The
RAZORBILL study (NCT04662944) investigates the impact of advanced
Al segmentation algorithms on the nAMD disease activity assessment by
enriching three-dimensional OCT scans with automated fluid and layer
quantification measurements.’?

A prospective study using fluid monitoring (NCT05093374) is an
example of ongoing trials using automated segmentation of retinal fluid
volumes.®® In Europe, the Fluid Monitor (RetInSight) is an algorithm
approved for the clinical monitoring of fluid in patients with nAMD. In
the U.S., it is being used in investigational studies. The algorithm is
linked to the Spectralis HEYEX 2 platform (Heidelberg Engineering) and
will soon be linked to the Topcon Triton OCT and Cirrus OCT (Zeiss).”®

Aside from the utilization of Al-based OCT assessments in clinical
trials and clinical practice, Al-powered home OCT is a reality. The
Scanly Home OCT device (Notal Vision, Manassas VA) is the first FDA-
approved device, which allows patients to perform a home-based mac-
ular scan. The scan is then sent to their physicians for evaluation of fluid
in between office anti-VEGF treatments. This system could potentially
shift the treatment paradigm from a “treat and extend” approach to a
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personalized “treat and observe” regimen. Such a system allows for
continual monitoring for CNV recurrence and longer inter-visit in-
tervals. Earlier disease detection of recurrent nAMD is theoretically
possible.

The potential clinical utility in home OCT for treatment of nAMD is
being investigated by the DRCR Retina Network protocol AO. Research
is ongoing to determine the optimal threshold level of retinal thickness
increase that should trigger a clinical alert to the physician. A potential
pitfall of using home OCT is the lack of fundus imaging, which means
small amounts of retinal hemorrhage may go undetected. In contrast,
imaging in the clinic typically includes a retinal clinical exam, which can
detect such issues.

Prior research on the home OCT has shown high rates for both pa-
tient userability and retina scans with similar rates of retinal fluid
detection as office-based OCT machines. The imaging success rate has
been reported to range from 87 % to 93 %. In one study with an imaging
success rate of 88 %, higher rates were found for patients with visual
acuity greater than 20/320, with a 90 % success rate for VA > 20/320
versus a 50 % success rate for VA < 20/320.” In other studies, 86.5 % to
93 % of scans were eligible for fluid quantification.”> When comparing
in-office and home OCT performance, the positive and negative percent
agreement rates for the presence of fluid by an expert grader were 98 %
and 96 %, respectively. Quantitative agreement between Notal OCT
Analyzer (NOA), a deep learning-based algorithm for automated esti-
mation of fluid volumes, and manually graded outputs by an expert
grader showed a Pearson correlation of 91.6 %.”" In another study, fluid
assessments performed on the same day using in-office OCT and NOA on
the home OCT scans showed that agreement was 96 %.”° Finally, cases
where NOA estimated fluid to be greater than 10-nL were compared to
in-office OCT scans; graders identified fluid on the in-office OCT in all
cases, effectively demonstrating that there were no false positives.”®

In summary, Al-based algorithms are able to identify the location,
subtype, and fluctuations of essential OCT biomarkers, assist physicians
in identifying patient subtypes for clinical trial recruitment, provide
quantitative image analysis, and enable personalized clinical care.

Prediction of disease progression

Al deep learning algorithms can detect early AMD biomarkers
associated with disease progression, such as pseudodrusen, intraretinal
HF and hyporeflective cores.”” Al algorithms can predict the progression
of drusen over time in AMD patients.”® More significantly, Al algorithms
can also predict the likelihood of progression to late stages of AMD, GA
or nAMD. For example, there is an Al algorithm that uses a two-step
prediction model to accurately predict progression to late AMD within
five years. The model, trained and tested on the AREDS2 dataset, uti-
lized DeepSeeNet on color fundus photos to identify AMD features that
increased the risk of AMD progression, and then combined patient de-
mographic features to predict progression to late AMD.”° The C-statistic
(representative of the AUC for binary outcomes) for AMD progression at
five years from baseline was 0.84. Another study used the Moorfields
database on patients with nAMD in one eye, and who also had OCTs of
the fellow eye taken every one to twelve months, to create an algorithm
that predicted development of nAMD in the fellow eye. This algorithm’s
prediction of the risk of conversion of the fellow eye to nAMD within six
months outperformed that of five out of six retinal specialists.®’ In
Europe, the GA Monitor is a commercial software (RetInSight) approved
for use in OCT systems for GA monitoring. The GA Monitor quantitates
the amount of photoreceptor loss (ellipsoid zone) and RPE loss and can
track this over time in GA patients. It identifies patients who will be fast
progressors on the basis of a single OCT at presentation.®’ It is likely that
other similar systems will gain approval for clinical use throughout the
world for AMD and other retinal conditions.
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Anti-VEGF treatment requirements and outcome predictions

Al applications have shown great promise not only in predicting
progression of AMD but also in assisting in AMD treatment decisions.
With the availability of high-resolution OCT data, detailing retinal
structures and biomarkers, several Al applications and systems have
been developed to assist clinicians in predicting anti-VEGF treatment
requirements and clinical outcomes.®? %

Al-based systems developed with OCT can involve feature learning
and/or deep learning. Feature learning includes predictions and classi-
fications based on pre-determined extraction of biomarkers, such as
fluid volume quantification, fibrovascular PED, subretinal hyper-
reflective material and HF.°®® Deep learning includes the ability of
neural networks to differentiate between disease states and outcomes.
Most Al systems have been developed using standardized clinical data-
sets. It is important to note that all Al-based systems need to be validated
on external patient populations, preferably using real-world data, to
ensure generalizability, improve performance, and facilitate translation
into clinical practice.

Predicting anti-VEGF treatment requirements

Predicting the required anti-VEGF treatment in patients with neo-
vascular AMD may improve clinical management, ensure that patients
are not undertreated, and improve visual outcomes. It can also provide
information on the treatment disease burden. Treatment variability and
undertreatment have been highlighted by several studies.®>*® Most
importantly, initial vision gained may not be maintained over time in
clinical practice.®” The ability to predict the required anti-VEGF treat-
ment using Al-based approaches may help to identify patients who
require a higher frequency of anti-VEGF injections versus those who
require a lower frequency of injections. In addition, Al can also be used
for treatment predictions over different time intervals. Most of these
studies used clinical trial data to develop the Al prediction algorithms.

Al algorithms, using a machine learning approach, have classified
patients into low and high treatment frequency.®> The HARBOR (Har-
nessing Automatic Real-time Biomedical Observations and Responses)
clinical trial dataset, which includes OCT features, visual acuity mea-
surements, and demographic characteristics, was used to predict the
anti-VEGF treatment burden over a two-year follow-up period. Patients
were classified into low, medium and high injection requirements.
Classification of high and low demonstrated an AUC of 0.7 and 0.77,
respectively. The most relevant feature for treatment burden prediction
was subretinal fluid volume in the central 3 mm; the highest predictive
values were those at month 2.5 Other studies report AUCs of 0.77 and
0.82 for predicting few or many injections, respectively,®® and for pre-
dicting low or high demand in a treat-and-extend setting.>” While some
researchers found OCT fluid, lesion characteristics and treatment tra-
jectory in the first three months of treatment as important features,®
others were able to predict low demand at the first visit even before the
first injection.89

Use of real-world data has enabled the development of a fully
automated Al algorithm that enables probabilistic forecasting (providing
uncertainty estimates) of future anti-VEGF treatment frequency.®! This
system highlighted the most relevant imaging biomarkers for these
predictions. They provided a measure of predictive uncertainty for each
individual prediction (as illustrated in Fig. 1). The researchers extended
the previously developed NGBoost algorithm”® with the addition of a
negative binomial distribution as a probability distribution to
adequately reflect the needed anti-VEGF injection frequency. Specif-
ically, NGBoost allowed for the prediction of the injection frequency
with a mean absolute error of 2.66 injections per year [2.31-3.01].
Feature importance analysis across the machine learning models
revealed that the standard deviation of retinal pigment
epithelium-drusen complex thickness in the central ETDRS subfield
thickness was a top-ranked feature. Another important feature was the
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Hallak JA. Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration. Transl Vis Sci Technol. 2021 Jun

1;10(7):30.

standard deviation of the inner segment thickness as an inner nasal
ETDRS (Early Treatment Diabetic Retinopathy Study) subfield. The
probabilistic prediction of anti-VEGF treatment frequency was
compared to other standard machine learning models, showing similar
accuracy.

Fig. 1 shows the probabilistic forecasting for two representative pa-
tients. For these patients, the forecasted distribution is very much
coherent with the clinical imaging characteristics. The figure shows the
central SD-OCT B-scan of two patients and the probabilistic forecast for
the upcoming twelve months. The upper patient shows a type 1 CNV
with no IRF and only subtle SRF (in neighboring B-scans). The predictive
model predicts three to four injections per year for this eye (true number
of required injections = 2). In contrast, the model predicts seven to eight
injections per year for the eye of the lower patient, which is character-
ized by marked IRF and SRF and a type 2 CNV membrane (true number
of required injections = 10). This work highlights the potential of novel
algorithms to inform clinical practice, facilitate patient scheduling, and
identify patients who may benefit from long-acting treatment
modalities.

In addition to utilizing machine and feature extraction learning
methods, researchers have utilized a deep learning model to predict the
burden of anti-VEGF injections.”’ An end-to-end trainable densely
connected neural network (DenseNet) and a recurrent neural network
(RNN) were built by sampling 2D-OCT volume images. DenseNET
learned retinal spatial features while the RNN integrated information
from different time points. In a pro-re-nata (PRN) treatment regimen,
the classification task obtained an accuracy of 0.85 in predicting patients
with low and high treatment requirements.”!

Predicting treatment outcomes

Recently, several machine and deep learning methods have been
used to predict the response of patients with nAMD to anti-VEGF ther-
apy. Outcomes included predicting visual acuity post anti-VEGF treat-
ment at various time points and OCT features.”” *°

Standard machine learning techniques using the LASSO feature
learning model can predict visual acuity outcomes at three and twelve
months after inputting data following three anti-VEGF treatments.’” The
system had a mean absolute error of 5 letters in the 3-month prediction
and 8 letters in the 12-month prediction. A 12-month AI tool may help
improve adherence to treatment.””

Deep learning techniques were utilized in other studies to predict
visual outcomes. One study evaluated the predictive ability of OCT
imaging biomarkers for cross-sectional and future visual outcomes.’® Al
deep learning algorithms automatically segmented OCT images and
predicted visual acuity at distant time points up to twelve months. Most
importantly, the study demonstrated that incremental changes in visual
acuity after an injection can be predicted.”

Several other studies also utilized deep learning to predict visual
outcomes, treatment response, OCT images, and to select choice of
treatment.”*°® In one study, a novel convolutional network predicted
the 12-month visual outcomes with an AUC of 0.989 and accuracy of
0.936.°* Another study developed a deep learning architecture named
sensitive structure guided network (SSG-Net) to predict short-term
anti-VEGF treatment responder/non-responder patients based on OCT
images.”” The model predicted the short-term efficacy of treatment with
an accuracy of 84.6 %, AUC of 0.83, sensitivity of 0.692 and specificity
of 1.7

A generative adversarial network model trained on OCT images was
used to predict agent-specific short-term outcomes, specifically to
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predict the presence of retinal fluid after treatment.’® The system had
higher sensitivity than human examiners to predict a difference in the
efficacy in fluid resolution with anti-VEGF agents.”® Using real-world
data, a machine learning model with computed OCT quantitative fea-
tures could predict anti-VEGF treatment requirements, visual acuity and
morphological outcomes.”® Best-corrected visual acuity at baseline was
the most relevant predictive factor for 1-year visual acuity outcomes.
Additionally, the system could predict the development of subretinal
fibrosis with an AUC of 0.74.%°

Lastly, synthetic image generation has also been proposed for AMD.
A generative adversarial network generated and evaluated synthetic and
individualized post-treatment OCT images that could predict short-term
response after anti-VEGF therapy; 92 % of synthetic OCT images were of
sufficient quality for clinical interpretation.”®

The next phase of Al-based systems may include OCTA features, in
addition to OCT B scans, to develop multimodal Al-based systems for
treatment requirements and outcome prediction. Models may improve
predictions by including a combination of imaging, demographic, and
clinical information. In summary, Al technology may assist clinicians in
customizing the number of injections needed and in selecting the
medication most likely to resolve the nAMD features. This paves the
pathway towards personalized medical management for nAMD. Al is
also being applied to predict outcomes for other retinal diseases and
holds promise for increasing the personalization of care for all patients.

Surgical applications

Al applications for retinal surgery include applications related to pre-
operative, intraoperative and post-operative aspects. These applications
continue to be developed and refined and there are not yet any regu-
latory agency approved systems.’® Pre-operative applications include
prediction of visual and anatomic outcomes after the surgical inter-
vention.” 1! For example, a multicenter study using Al deep learning
models to predict macular hole status after pars plana vitrectomy (PPVx)
surgery with internal limiting membrane (ILM) peeing showed an
overall accuracy of 84.7 % with an AUC of 89.32 %.'%°

Another study used a multimodal deep fusion network model
(MDFN) to reliably predicted MH closure status (closed or open) one
month after PPVx with ILM peeling, based on pre-operative macular
OCT images and clinical data (including age, gender, duration of
symptoms, minimal diameter of MH, base diameter of MH, height of
hole, macular hole index, diameter hole index, hole form factor, and
tractional hole index).'°" The AUC of this MH status prediction model
was 0.947.

Others have applied Al for prediction of outcomes after rhegmatog-
enous retinal detachment repair.'’? A multimodal fusion model using
ultra-widefield fundus images, macular OCT images, age, gender, and
pre-operative BCVA predicted post-operative visual acuity outcomes
with an AUC of 0.91 with a mean accuracy of 0.86, sensitivity of 0.94,
and specificity of 0.80. Not surprisingly, heatmaps revealed that the
macular area for both OCT and ultra-widefield images was the most
informative for model predictions.

Al holds potential applications in the performance of surgical
procedures.'?*'1% Robotic assistance and guidance may enable tech-
niques that have previously been unfeasible due to biological limitations
and intrinsic hand tremors.'?>1%° Real-time instrument tracking, colli-
sion avoidance and surgical education are other areas for which Al may
hold significant impact.'** 1% These applications could make surgery
safer. Epiretinal membrane peeling, retinal vessel cannulation and
subretinal gene therapy are some potential applications.

A robotic surgical system (Preceyes) was first used for human retinal
surgery in nAMD patients with subretinal hemorrhage, which was
treated with subretinal injections of recombinant tissue plasminogen
activator (rt-PA)."'* A surgeon used a remote z-axis control to guide the
placement of a thin cannula through the retina and into the subretinal
space to deliver the rt-PA. Such intraoperative applications illustrate the
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use of Al to improve surgical precision. Continued Al research applica-
tions are needed not only for operative applications, but also for
pre-operative and post-operative applications that will benefit the care
of our surgical patients.

Federated learning

Development of Al systems is greatly facilitated by the ability to
utilize validated datasets from several sources that include diverse pa-
tient populations. Collaboration amongst investigators from different
locations may be hindered by institutional concerns about internet se-
curity as well as limitations regarding data access. Federated learning
provides a collaborative framework in which Al training data is not
exchanged. This overcomes limitations on data sharing, such as policy,
security, and coalition constraints. Federated learning initially emerged
in the field of communications to enhance the training of deep learning
(DL) networks using decentralized data.'''"''® Subsequently, it was
adopted in the healthcare sector to enable multi-institutional training of
models. This approach aims to develop powerful, accurate, safe, robust,
and unbiased models while adhering to the Health Insurance Portability
and Accountability Act (HIPAA), which mandates the confidential
handling of protected health information.''* A notable development
was the federated learning platform created for diagnosing COVID-19
using computed tomography (CT) scans. This platform employed a
three-dimensional dense CNN to provide a real-world, globally con-
structed, and validated clinical tool for CT-based COVID-19 diagnosis,
leveraging artificial intelligence.''®

At its foundation, federated learning involves numerous nodes that
collaboratively train a ML or DL model. Each node trains its model
locally and shares its parameters using one of two common federated
learning communication architectures: centralized or decentralized. In a
centralized architecture, a server acts as an orchestrator, collecting
model parameters or weights from each node, aggregating them, and
then redistributing the updated parameters back to the nodes. In a
decentralized architecture, each node directly passes its weights to
another, allowing for direct updates to the global parameters by every
node.'!°

Recently, several frameworks for developing federated learning al-
gorithms, such as NVIDIA FLARE,''” Flower,''® and FedEYE''® have
been developed. There are several challenges in applying federated
learning in the medical domain such as model-aggregation policy,
participation motivations, hardware or network condition. And more
importantly, differences in image acquisition protocols and labeling
methodologies across institutions which may lead to the generation of
site-specific models that do not fit other sites well and contribute
negatively to the global model.'*°

On the other hand, the benefits of federated learning are undeniable.
The federated learning framework has the potential to link isolated
medical institutions, hospitals, and devices, enabling sharing while
ensuring privacy. As the number of wearable devices focused on public
health increases, federated learning can leverage medical domain
knowledge to personalize the global model for each medical institution
and wearable device. Additionally, federated learning is scalable with
minimal additional cost, allowing for the training of models using a
diverse and augmented set of learning samples.'?!

Several studies have focused on developing model-aggregation pol-
icies within a centralized architecture to address the challenges posed by
non-independent and identically distributed (non-IID) data, as the
quality of the federated learning model degrades if each federated
learning node has a unique distribution of data.'?? To create a more
generalizable aggregation policy capable of handling heterogeneous
data, researchers have proposed the use of reinforcement learning,'?*
contrastive learning,'?* and new optimization methods.'?*

Studies on federated learning in ophthalmology support global
health collaboration and offer a promising approach to privacy-
preserving Al research. Using federated learning, it is possible to train
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DL-derived ROP that can identify differences in clinical diagnoses and
disease severity across institutions without sharing data. Federated
learning could standardize clinical diagnoses and provide objective
measurements for image-based diseases.'”® Moreover, a trained feder-
ated learning model performs comparably to a centralized model in
classification, confirming that federated learning may provide an
effective, more feasible solution for interinstitutional learning. Smaller
institutions benefit more from collaboration than larger institutions,
showing the potential of federated learning for addressing disparities in
resource access.'2%1%/

In addition, federated learning can enhance domain diversity and
generalizability of models using OCT and OCTA images. Federated
learning models achieve a AUROC comparable to that of the traditional
DL models for microvasculature segmentation and rDR classification.'%®
129 Research on the feasibility of utilizing federated learning in identi-
fying AMD demonstrated its practicality and benefits.'?° Different ag-
gregation  policies—FedAvg,  FedProx,'?°  FedMRL'*°  and
APFL'®'_alongside deep learning networks such as ResNet and Vision
Transformers, proved useful.

More research is needed on implementing federated learning in
healthcare. These areas include addressing current barriers to applying
federated learning, making it a key strategy for preserving privacy in Al
health research,'®? and combining different data types for comprehen-
sive disease diagnosis. There also exists a need to integrate federated
learning with blockchain technology to enhance privacy, security, and
efficiency. 133

Conclusion

In summary, Al applications to the retinal field are myriad, ranging
from screening and diagnosis to monitoring and predicting treatment
response. Al holds the promise of streamlining the assessment of a pa-
tient’s disease through rapid detection of biomarkers and computation
of change over time. Al also improves the granularity of that assessment
with quantitative data analysis of FAF, OCT, and OCTA parameters. Al
will increase the personalization of treatment, enabling tailored treat-
ment choices and treatment intervals that best address a particular pa-
tient’s disease state. Not only medical retina patients, but also surgical
retina patients, stand to benefit. In order to achieve this universality of
benefits for all retina patients, worldwide collaboration remains para-
mount. It is crucial to include a diverse population—considering race,
ethnicity, geography, and socioeconomic factors—in the training of Al
models. Striving for widespread collaboration and a culture of inclu-
sivity will help ensure the applicability of AI algorithms for all members
of the world.
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