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Diagnostic Accuracy of Community-Based Diabetic
Retinopathy Screening With an Offline Artificial Intelligence
System on a Smartphone
Sundaram Natarajan, MD; Astha Jain, MD; Radhika Krishnan, MD; Ashwini Rogye, B Optom;
Sobha Sivaprasad, FRCOphth

IMPORTANCE Offline automated analysis of retinal images on a smartphone may be a
cost-effective and scalable method of screening for diabetic retinopathy; however, to our
knowledge, assessment of such an artificial intelligence (AI) system is lacking.

OBJECTIVE To evaluate the performance of Medios AI (Remidio), a proprietary, offline,
smartphone-based, automated system of analysis of retinal images, to detect referable
diabetic retinopathy (RDR) in images taken by a minimally trained health care worker with
Remidio Non-Mydriatic Fundus on Phone, a smartphone-based, nonmydriatic retinal camera.
Referable diabetic retinopathy is defined as any retinopathy more severe than mild diabetic
retinopathy, with or without diabetic macular edema.

DESIGN, SETTING, AND PARTICIPANTS This prospective, cross-sectional, population-based
study took place from August 2018 to September 2018. Patients with diabetes mellitus who
visited various dispensaries administered by the Municipal Corporation of Greater Mumbai in
Mumbai, India, on a particular day were included.

INTERVENTIONS Three fields of the fundus (the posterior pole, nasal, and temporal fields)
were photographed. The images were analyzed by an ophthalmologist and the AI system.

MAIN OUTCOMES AND MEASURES To evaluate the sensitivity and specificity of the offline
automated analysis system in detecting referable diabetic retinopathy on images taken on
the smartphone-based, nonmydriatic retinal imaging system by a health worker.

RESULTS Of 255 patients seen in the dispensaries, 231 patients (90.6%) consented to
diabetic retinopathy screening. The major reasons for not participating were unwillingness to
wait for screening and the blurring of vision that would occur after dilation. Images from 18
patients were deemed ungradable by the ophthalmologist and hence were excluded. In the
remaining participants (110 female patients [51.6%] and 103 male patients [48.4%]; mean
[SD] age, 53.1 [10.3] years), the sensitivity and specificity of the offline AI system in
diagnosing referable diabetic retinopathy were 100.0% (95% CI, 78.2%-100.0%) and 88.4%
(95% CI, 83.2%-92.5%), respectively, and in diagnosing any diabetic retinopathy were 85.2%
(95% CI, 66.3%-95.8%) and 92.0% (95% CI, 97.1%-95.4%), respectively, compared with
ophthalmologist grading using the same images.

CONCLUSIONS AND RELEVANCE These pilot study results show promise in the use of an offline
AI system in community screening for referable diabetic retinopathy with a
smartphone-based fundus camera. The use of AI would enable screening for referable
diabetic retinopathy in remote areas where services of an ophthalmologist are unavailable.
This study was done on patients with diabetes who were visiting a dispensary that provides
curative services to the population at the primary level. A study with a larger sample size may
be needed to extend the results to general population screening, however.
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D iabetic retinopathy (DR) is a major cause of prevent-
able blindness in the working-age population in many
countries of the world.1 People with diabetes usually

remain asymptomatic until an advanced stage of DR. There-
fore, screening for sight-threatening complications is neces-
sary to initiate timely treatment.1,2 Prevalence of blindness at-
tributable to DR has decreased in countries such as the United
Kingdom because of effective population-based screening pro-
grams that use desktop retinal cameras to capture 1-field,
2-field, or 3-field mydriatic digital retinal photographs,2,3 fol-
lowed by primary or secondary human grading and an arbi-
tration process.1-3 These are costly, time-consuming, and com-
plex screening programs that require considerable training in
the use of cameras, as well as experienced retinal graders, lim-
iting the relevance of these models in developing countries.
There is a substantial unmet need for accurate and simple-to-
use screening modalities that can be used globally to screen
people for DR. Smartphone-based retinal imaging is emerg-
ing as a cost-effective way of screening for retinopathy in the
community.4,5 Similarly, automated analysis of retinal im-
ages captured using standard retinal cameras has the prom-
ise of being cost-effective and scalable within population-
based DR screening programs.6,7 Incorporating similar
automated analysis into low-cost, smartphone-based de-
vices has been shown to be acceptable for screening.8

To date, most automated algorithms use deep-learning and
neural networks that require a processor-intensive environ-
ment for inferencing, resulting in images needing to be trans-
ferred to the cloud. However, there are many parts of the world
where access to a stable internet connection is not assured. This
study validates the performance of an offline automated analy-
sis algorithm that runs directly off a smartphone. To our knowl-
edge, this is the first study evaluating an offline artificial in-
telligence (AI) algorithm to detect DR using an affordable, easy-
to-use, smartphone-based imaging device.

Methodology
Fundus images were captured using the Remidio Non-
Mydriatic Fundus on Phone (Remidio Innovative Solutions
Pvt Ltd). The images so captured were subjected to auto-
mated analysis by the Medios AI (Remidio), a proprietary
offline automated analysis of retinal images on a smart-
phone to detect referable diabetic retinopathy (RDR) on
images taken by a health care worker on a smartphone-
based, nonmydriatic retinal camera. These were also graded
by a vitreoretinal resident physician and a vitreoretinal
surgeon (A.J.) who were masked to the results from the AI
system.

Institutional review board approval was obtained from the
Aditya Jyot Eye Hospital Ethics Committee. Informed con-
sent was obtained from all participants. The protocol ad-
hered to the tenets of the Declaration of Helsinki. Both the of-
fline automated analysis and the smartphone-based,
nonmydriatic retinal imaging system are based on propri-
etary technologies. However, authors of the study have no fi-
nancial interest in these technologies.

Capture of Retinal Images
This was a prospective, cross-sectional study of diagnostic ac-
curacy. Patients with diabetes mellitus who were visiting the
various dispensaries administered by the Municipal Corpora-
tion of Greater Mumbai in Mumbai, India, on a particular day
were screened for DR using the portable, smartphone-based,
nonmydriatic retinal imaging system. Preliminary data, such
as age, sex, duration since diabetes onset, and postprandial
blood glucose level, were collected. Patients’ eyes were di-
lated using single drop of tropicamide eyedrops, 1%, which has
previously been found to cause minimal risk of angle-closure
glaucoma.9 Fundus imaging was then done by a health care
worker with no professional experience in the use of fundus
cameras. An anterior segment photograph was first cap-
tured, followed by 3 fields of the fundus (namely, the poste-
rior pole, including the disc and macula, and the nasal and tem-
poral fields), as per the Early Treatment Diabetic Retinopathy
Study protocol (Figure 1). The offline AI algorithm on the smart-
phone flags images of poor quality, prompting the operator to
take additional pictures of the same retinal view until the im-
ages were deemed acceptable by the AI system.

Grading by Human Graders
The images were stored on a Health Insurance Portability and
Accountability Act–compliant cloud server (Amazon Web Ser-
vices) and graded by a vitreoretinal resident and a vitreoreti-
nal surgeon (A.J.) at the Aditya Jyot Eye Hospital and Aditya
Jyot Foundation for Twinkling Little Eyes in Mumbai, India,
who were masked to the AI grading results. In case of a dis-
crepancy between the grading of the resident and surgeon, the
diagnosis of the surgeon was considered final. The grading of
retinopathy was done according to the International Clinical
DR severity scale.10 The final diagnosis for each patient was
determined by the stage of DR of the more affected eye per the
International Clinical DR severity scale. Patients whose im-
age of 1 or both eyes was considered ungradable were ex-
cluded from the AI analysis.

Grading by Offline AI System
The offline automated analysis application is integrated into
the smartphone-based, nonmydriatic retinal imaging sys-

Key Points
Question To evaluate the performance of an offline, automated
artificial intelligence system of analysis to detect referable diabetic
retinopathy on images taken by a health worker on a
smartphone-based, nonmydriatic retinal camera.

Finding In this cross-sectional study, fundus images from 213
study participants were subjected to offline, automated analysis.
The sensitivity and specificity of the analysis to diagnose referable
diabetic retinopathy were 100.0% and 88.4%, respectively, and
the sensitivity and specificity for any diabetic retinopathy were
85.2% and 92.0%, respectively.

Meaning This study suggests these methods might be used to
screen for referable diabetic retinopathy using offline artificial
intelligence and a smartphone-based, nonmydriatic retinal
imaging system.
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tem. It is a component of the camera control app and thus
seamlessly integrates into the image acquisition workflow. It
can be broadly divided into 2 core components. First, an al-
gorithm checks the quality of the captured images. A second
DR assessment mechanism generates a diagnosis by detect-
ing DR lesions. This mechanism relies on 2 convolutional neu-
ral networks.

Captured images are first processed by a cropping algo-
rithm. This removes the black border surrounding the circu-
lar field of view generated by the fundus camera. They are then
down-sampled to a standardized image size. A first neural net-
work assesses the quality of the image. This network is based
on the MobileNet architecture. It has been trained with fun-
dus images flagged as ungradable, as well as images of suffi-
cient quality. The user is advised to recapture the image if the
result of the neural network is negative.

Two neural networks have been trained separately to
detect DR. They consist of binary classifiers based on the
Inception-V3 (Google) architecture that separate healthy
images from images with referable DR (defined as moderate
nonproliferative DR and cases of greater severity). No
images with mild nonproliferative DR have been used dur-
ing training. The training set consisted of 34 278 images
from the Eye Picture Archive Communication System (Eye-
PACS) data set, 14 266 images taken with a Kowa VX-10α
mydriatic camera at Diacon Hospital in Bangalore, India,
and 4350 nonmydriatic images taken in screening camps by
the smartphone-based, nonmydriatic retinal imaging sys-
tem. The data set has been curated to contain as many refer-
ral cases as healthy ones. It has also been curated to contain
images taken in a variety of conditions, including with non-
mydriatic and low-cost cameras.

Three different data sets were used for internally validat-
ing networks and ensembling them. These are separate from
the training data. Results on these data sets are shown in
Table 1. Data set 1 consists of images taken with the mydriatic
version of the smartphone-based, nonmydriatic retinal imaging
system at Dr Mohan’s Diabetes Specialties Center in Chennai,
India. Data set 2 consists of images taken with the mydriatic
mode (one of several modes available on this more recent de-
vice) of the smartphone-based, nonmydriatic retinal imaging
system at Diacon Hospital in Bangalore, India. These institu-
tions only provided images with their diagnosis and were not
involved in computing the results.

One of the 2 networks has been trained directly on the cap-
tured images, while the other works on images that under-
went an image-processing algorithm to boost their contrast.
The contrast-enhancement algorithm has been empirically op-
timized to make DR lesions stand out in the input images. Both
outputs of each network are then fed to a linear classifier that
computes the final assessment of an image. This follows the
ensemble learning paradigm. It improves the accuracy by com-
bining several classifiers trained under different strategies.
Common data-augmentation techniques, such as rotations,
flipping, and zooming, were applied to both networks. Final
referral recommendations are given on a patient level. A pa-
tient was considered to have referable disease if any image was
flagged as referable by the algorithm.

Class activation mapping11 was also implemented. This
gives a visual feedback to the physician by displaying the areas
of the fundus image that have triggered a positive diagnosis.
Examples of outputs are given in Figure 2.

The whole system has been implemented directly on the
iPhone 6 (Apple) using high-performance image processing
techniques based on CoreML version 2.0 (Apple) and Open
Graphics Library ES 2.0 (Silicon Graphics), leveraging on the
graphics processing unit of the device instead of an internet
connection to a remote server. Both the image processing al-
gorithms and the neural networks run in seconds on an iPhone
6 (Apple).

The same images of these patients were graded by the of-
fline automated analysis algorithm to have either referable DR
or no DR. The AI algorithm was run offline on the smart-
phone by the operator immediately after image acquisition. Ad-
judication of images that presented results that differed be-
tween the resident, surgeon, and AI system was handled by
the vitreoretinal surgeon (A.J.) at Aditya Jyot Foundation for
Twinkling Little Eyes.

The offline automated analysis is designed to binary-
type only RDR and no DR. It does not grade the stages of DR,
such mild nonproliferative DR, moderate nonproliferative DR,
severe nonproliferative DR, and proliferative DR.

Statistical Analysis
Sensitivity and specificity statistics were computed for both
any DR as well as RDR, assuming the ground truth to be the
evaluation of the same patient images by the vitreoretinal resi-
dent and surgeon. The eye with the more severe retinopathy
grading was considered the patient-level grading. The mini-
mum number of patients needed to be screened in an oppor-
tunistic screening context, such as an outreach center in In-
dia, was calculated, assuming a margin of error of 7% for this

Figure 1. Seven-Segment Early Treatment Diabetic
Retinopathy Study Protocol
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study on either side of the mean (given a previously pub-
lished mandate from the US Food and Drug Administration of
an end point of at least 86% diagnostic sensitivity of RDR).12

At the 95% CI, and a population of 18.4 million in Mumbai (cen-
sus of 2011), with a maximum DR prevalence of 20%,13 this re-
sulted in a minimum sample size of 200 patients.

Results
Of the 255 patients seen at the dispensary on the day the study
was conducted, 231 consented for DR screening. The major rea-
sons given by the 24 nonparticipating patients for refusal were
the unwillingness to wait for screening and the blurring of vision
that would occur after dilation. Images of one or both eyes from
18patientsweredeemedungradablebytheophthalmologist,and
these individuals were therefore excluded. Hence, a total of 213
patients were analyzed for assessment of RDR using AI, with 1
or more ophthalmologists grading the same images regarded as
the ground truth (defined as a direct observation serving as the
gold standard). Among the 213 included patients, there were 110
female patients and 103 male patients. The mean (SD) age of the

participants was 53.1 (10.3) years. The mean (SD) postprandial
blood glucose level was 207.8 (74.7) mg/dL (to convert to milli-
moles per liter, multiply by 0.0555), and the mean (SD) duration
since diabetic disease onset was 5.5 (4.75) years.

A total of 187 patients were diagnosed as having no DR by
ophthalmologist grading. Of these, 172 patients were cor-
rectly diagnosed by AI, whereas 15 patients (8.0%) were in-
correctly diagnosed as having RDR. Fifteen patients (8.0%)
were identified as having RDR by ophthalmologist grading, and
all 15 (100.0%) were correctly diagnosed by the AI. Among 12
individuals with cases of mild nonproliferative DR who were
diagnosed by the ophthalmologists, 8 patients (67%) were di-
agnosed as having RDR by the AI, while 4 (33%) were diag-
nosed as not having DR. This gave a sensitivity and specific-
ity of diagnosing RDR as 100% (95% CI, 78.2%-100%) and
88.4% (95% CI, 83.16%-92.53%), respectively; the same val-
ues for any DR were 85.2% (95% CI, 66.3%-95.8%) and 92.0%
(95% CI, 97.1%-95.4%), respectively (Table 2). There was ex-
cellent intergrader agreement between the vitreoretinal resi-
dent and the vitreoretinal surgeon (eyewise grading: mini-
mum κ = 0.89 [SE, 0.05]; clinically significant macular edema
grading: minimum κ = 0.77 [SE, 0.06]).

Table 1. Medios Artificial Intelligence Internal Validation: Performance Results on Data Sets

Data Set Images, No. Patients, No.

Referable Diabetic Retinopathy Any Diabetic Retinopathy

Sensitivity, % Specificity, % Sensitivity, % Specificity, %
1 3038 301 95.9 81.3 86.2 99.1

2 1054 165 100.0 78.7 77.1 91.3

Figure 2. Class Activation Mapping in Mild, Moderate, and Severe Nonproliferative Diabetic Retinopathy (NPDR)
and Proliferative Diabetic Retinopathy (PDR)

Example lesion detection by offline AI in a patient with mild NPDRA Example lesion detection by offline AI in a patient with moderate NPDR with CSMEB

Example lesion detection by offline AI in a patient with severe NPDR with CSMEC Example lesion detection by offline AI in a patient with PDR and CSMED

AI indicates artificial intelligence; CSME, clinically significant macular edema.
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Since the image capture was done by a nonspecialist, there
were images that did not meet the minimum image quality re-
quirement of the AI. A separate analysis was performed
wherein the health care worker was asked to use all images
taken in every patient, including the images not meeting the
minimum quality standards of the AI, in assessing the diag-
nostic accuracy of the AI (Figure 3). The sensitivity for detec-
tion of RDR continued to remain 100.0% (95% CI, 78.2%-
100.0%), while the specificity dropped to 81.9% (95% CI,
75.9%-87.0%) as a result of an increase in the number of no
DR cases graded as RDR by the AI, consequent to the inclu-
sion of the poorer-quality images (Table 2). In fact, eyewise
analysis of the same data set with the inclusion of poor-
quality images showed sensitivity of detection of RDR of
100.0% (95% CI, 85.2%-100.0%), specificity of detection of
RDR of 87.6% (95% CI, 83.8% to 90.8%), sensitivity of detec-
tion of any DR of 81.0% (95% CI, 65.9% to 91.4%), and speci-
ficity of detection of any DR of 90.1% (95% CI, 86.4% to 93.0%),
as shown in Table 2.

Discussion
This study evaluates the diagnostic accuracy of an offline AI
algorithm for detection of RDR on images taken from a smart-
phone-based portable camera. To our knowledge, this is the
first study assessing an offline AI algorithm on a smartphone
for detection of RDR.

In a developing country such as India, nearly 70% of the
population resides in rural areas, and a ratio of only 1 ophthal-
mologist per 100 000 people14 is available for the care of the
entire population. This study shows how an offline AI algo-

rithm can help address this lack of specialist access through
automatic, instant grading of the retinal images, highlighting
a possible solution for implementation of large-scale models
for screening for RDR. Various software have been used pre-
viously for automated detection of DR.6,7,12 The current study
uses the offline automated analysis that gives results in real
time.

The sensitivity for detection of RDR remained at 100.0%
in both the eyewise analysis as well as the patientwise analy-
sis, pointing to an inherent robustness of the offline algo-
rithm in screening for RDR. Similar high sensitivity was found
in the study by Gulshan et al6 albeit in an in-clinic retrospec-
tive study, while in the EyePACS-1 data set, the sensitivity was
97.5% and the specificity was 93.4%. In the Messidor data set,
the sensitivity was 96.1% and the specificity was 93.9% for de-
tecting RDR. A study using the cloud-based software EyeArt
(Eyenuk) showed a sensitivity and specificity of 95.8% and
80.2%, respectively, for detecting any DR and 99.1% and 80.4%,
respectively, in detecting sight-threatening DR,8 using the same
smartphone-based retinal imaging system technology, albeit
via an earlier model of the device offering mydriatic imaging
alone. In a multiethnic study, Ting et al7 showed a sensitivity
and specificity of 90.5% and 91.6%, respectively, for RDR and
100% and 91.1%, respectively, for vision-threatening DR using
a conventional, desktop fundus camera.

The specificity seen in this study for detecting RDR may
have been slightly lower because many mild nonproliferative
DR cases have been identified as RDR by the offline auto-
mated analysis. This is because the offline AI was purposely
not trained on mild nonproliferative DR images, to ensure high
specificity in no DR and RDR diagnoses. Retinal lesions other
than DR, such as retinitis pigmentosa, drusen, and retinal pig-

Table 2. Medios Offline Artificial Intelligence Diagnoses vs Ophthalmologist Diagnoses

Diabetic Retinopathy
Diagnosis

Medios Artificial Intelligence

By Patient, After Excluding
Poor-Quality Images

By Patient, With Poor-Quality
Images Included By Eye

Referable Diabetic
Retinopathy

No Diabetic
Retinopathy

Referable Diabetic
Retinopathy

No Diabetic
Retinopathy

Referable Diabetic
Retinopathy

No Diabetic
Retinopathy

Ophthalmologist gradinga

None 15 172 28 159 35 317

Nonproliferative

Mild 8 4 8 4 11 8

Moderate 12 0 12 0 17 0

Severe 2 0 2 0 4 0

Proliferative 1 0 1 0 2 0

Diagnostic accuracy, %

Referable

NA NA NA

Sensitivity 100.0 100.0 100.0

Specificity 88.4 81.9 87.6

Any

Sensitivity 85.2 85.2 81.0

Specificity 92.0 85.0 90.1

Abbreviation: NA, not applicable.
a Ground truth.
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ment epithelium changes, were overdiagnosed by the AI as
RDR. Although incorrectly labeled as RDR, these cases likely
would warrant a referral to an ophthalmologist.

The major advantage of the offline, automated analysis
over the previously used deep-learning algorithms6,7,12,15,16 may
be that it can be used offline on a smartphone and would not
require internet access for real-time transfer of images, which
enables results to be given to patients immediately. The AI also
provides a lesion detection map on the images (Figure 2), which
guides the health worker and educates the patient.

Unlike previous retrospective studies that have assessed
the performance of the AI algorithms in an in-clinic setting
with images that are usually of excellent quality, this study
involved the use of the smartphone-based, nonmydriatic
retinal imaging system in the field by a health care worker
who was trained for less than 2 weeks on how to use the
device. Thus, not all the images were of excellent quality,
which is representative of what would typically be expected
in large-scale, opportunistic community screenings. Even
when the offline AI system was subjected to images with
quality deemed unacceptable by the AI (Figure 3), the sensi-
tivity for RDR and any DR of the offline automated analysis
remained unchanged, while the specificity for RDR and any
DR decreased by 7% as a result of some cases of no DR being
incorrectly graded as RDR. The superiority end point
deemed by the FDA in the pivotal clinical trials evaluating
the IDx AI algorithm was a sensitivity of 85% and a specific-
ity of 82.5%.12 The offline automated analysis algorithm
provides a sensitivity and specificity to detect RDR
of 100.0% and 88.4%, and this was above the defined
thresholds.

Limitations
One limitation of this study is the small sample size of the test
population on which the offline automated analysis was tested

compared with other studies in literature.6,7,12 Nevertheless,
to estimate the specificity and sensitivity with a lower mar-
gin of error of less than 3% (at the 95% CI), a larger sample size
of nearly 1050 patients will be needed, assuming a preva-
lence of up to 20% of DR in the Mumbai population.13 An-
other drawback is that the current version of the offline AI does
not permit grading of retinopathy according to the Interna-
tional Clinical DR severity scale or the National Health Ser-
vice classification. Hence, this study is unable to assess the sen-
sitivity and specificity of the offline AI for detection of
individual grades of DR.

In this study, the analysis included imaging pupils as small
as 3 mm. However, nonmydriatic imaging protocols in an In-
dian population have shown a large percentage of ungrad-
able images, owing to the comorbidity of cataract and smaller
mesopic pupil sizes.17 This necessitated dilated retinal pho-
tography in screening for RDR, especially when implement-
ing 3-segment digital retinal imaging protocols.18

Conclusions
The Municipal Corporation of Greater Mumbai, India, where
the study was conducted, is the largest municipal corpora-
tion in the country, with 174 dispensaries and 210 health posts
across the city. Of these, all 174 dispensaries run diabetes man-
agement services through monitoring and basic treatment. Of
the 255 patients eligible for inclusion, 231 patients (90.6%) vis-
iting the centers received examinations using a dilated imaging
protocol, pointing to convenience, affordability, and access to
instant reporting driving the demand for a proper DR screen-
ing with dilation. A validation of these findings on a larger data
set that enables precise assessment of specificity and
sensitivity with a standard error less than 3% is currently in
progress.

Figure 3. Artificial Intelligence Analysis of Poor-Quality Images
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Introduction

Approximately 463 million people live with diabetes 
worldwide, and about 700 million people are projected to 
have diabetes by 2045.1 Individuals with diabetes are 25 
times more likely to become blind than are those in the gen-
eral population.2 Thus, diabetic retinopathy (DR) is one of 
the leading causes of blindness worldwide, with sight-
threatening DR affecting 28.5 million people.3 In Mexico, 
increasing rates of obesity and a genetic predisposition for 
type 2 diabetes have led to the increasing prevalence 
(15.2%) of diabetes in adults.4 In 2016, Mexico declared 
that diabetes had reached epidemic proportions and should 
be considered a major public health problem.5 Furthermore, 

endocrine, nutritional, and metabolic diseases were the sec-
ond leading causes of death in 2014.6 Approximately 
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Abstract
Background: To compare the performance of Medios (offline) and EyeArt (online) artificial intelligence (AI) algorithms for 
detecting diabetic retinopathy (DR) on images captured using fundus-on-smartphone photography in a remote outreach field 
setting.

Methods: In June, 2019 in the Yucatan Peninsula, 248 patients, many of whom had chronic visual impairment, were screened 
for DR using two portable Remidio fundus-on-phone cameras, and 2130 images obtained were analyzed, retrospectively, 
by Medios and EyeArt. Screening performance metrics also were determined retrospectively using masked image analysis 
combined with clinical examination results as the reference standard.

Results: A total of 129 patients were determined to have some level of DR; 119 patients had no DR. Medios was capable 
of evaluating every patient with a sensitivity (95% confidence intervals [CIs]) of 94% (88%-97%) and specificity of 94% 
(88%-98%). Owing primarily to photographer error, EyeArt evaluated 156 patients with a sensitivity of 94% (86%-98%) and 
specificity of 86% (77%-93%). In a head-to-head comparison of 110 patients, the sensitivities of Medios and EyeArt were 99% 
(93%-100%) and 95% (87%-99%). The specificities for both were 88% (73%-97%).

Conclusions: Medios and EyeArt AI algorithms demonstrated high levels of sensitivity and specificity for detecting DR when 
applied in this real-world field setting. Both programs should be considered in remote, large-scale DR screening campaigns 
where immediate results are desirable, and in the case of EyeArt, online access is possible.
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artificial intelligence, diabetic retinopathy, fundus-on-phone camera, Mexico, rural health care, screening
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one-third of Mexicans with diabetes have DR, with an 
alarming incidence of 38.9% in Chiapas.7

Early detection of DR can help prevent blindness in those 
with diabetes. However, early detection of DR is challenging 
because Mexico does not have a national DR screening pro-
gram. Therefore, Retinacare International, a 501c3 US-based 
nonprofit organization, partnered with RetimediQ in 2005, a 
private ophthalmological clinic in Merida, Yucatan, to con-
duct annual and bi-annual DR screening campaigns through-
out the state. To date, we have screened >6000 patients in 
seven cities and towns using dilated, indirect ophthalmo-
scopic examinations, often combined with high-magnifica-
tion mydriatic funduscopic examinations.

Smartphone-based retinal imaging has emerged as an effi-
cient, sensitive, specific, and cost-effective method for DR 
screening.8-10 However, ophthalmologists or trained graders 
have been required to grade acquired images for the presence 
and severity of DR.11,12 This grading requirement is not prac-
tical for screening in an outreach field setting. Thus, an auto-
mated image-grading system for detecting DR is needed to 
facilitate large-scale DR detection screening efforts and 
reduce health care provider burden.

Diabetic retinopathy detection can now be performed by 
computer-based analysis of fundus images using machine 
learning and artificial intelligence (AI).13,14 Studies have 
demonstrated that deep-learning algorithms can accurately 
detect and grade DR in digital fundus images.15-19 Others 
have investigated the feasibility of DR detection using 
smartphone-based fundus photography (Remidio fundus-on-
phone [FOP] camera18 combined with an offline (Remidio 
Medios)20 or online version of AI software [Eyenuk 
EyeArt]).21 These studies determined that both versions of 
AI software show high sensitivity and specificity for detect-
ing DR in images acquired by smartphone-based fundus 
photography in tertiary care centers.20,21

This retrospective, noninterventional AI validation 
analysis compared the diagnostic accuracy of the offline 
Medios AI software and online EyeArt AI software for 
detecting DR on a single set of patient images acquired 
using the ultra-portable Remidio-FOP camera in an out-
reach field setting.

Methods

Patients

A total of 248 consecutive patients with a known history of 
diabetes were invited to participate in a DR screening cam-
paign in the cities of Valladolid and Merida, Yucatan, Mexico, 
in June 2019. Each patient was assigned a unique identifica-
tion number, and all data, including fundus images, were de-
identified to ensure patient confidentiality. The study 
protocol (EXT-22-01) was approved by the Research Ethics 
Committee of the Association to Avoid Blindness in Mexico 
I.A.P (CONBIOETICA-09-CEI-006-20170306) and the 

Committee of the Association to Avoid Blindness in Mexico 
I.A.P. (COFEPRIS: 17 CI 09 003 142). Written informed 
consent was obtained from all patients.

Screening

Three graduate students (AP, SW, GES) who did not have pro-
fessional experience in fundus photography acquired the 
images of dilated eyes using two portable Remidio-FOP cam-
eras (Remidio Innovative Solutions Pvt Ltd, Karnataka, India). 
A minimum of three fundus fields (ie, posterior pole [disc and 
macula], nasal, temporal) were attempted to be captured for 
each eye using the portable devices mounted on a table stand.

The offline AI algorithm on the Remidio smartphone 
flagged images rated as poor quality and prompted the oper-
ator to take additional pictures of the same or near retinal 
view until the images were deemed acceptable by the AI 
system. A retinologist (ES-B, MI, JJW) performed indirect 
ophthalmoscopic examinations on all patients, which were 
often combined with a high-magnification funduscopic 
examination using the slit lamp. The presence of DR was 
determined based on the clinical information collected. A 
patient was positive for DR if any degree of DR was identi-
fied in at least one eye.

Image Analysis

After the DR screening campaign, image sets were fully ana-
lyzed by the Medios offline automated application integrated 
into the smartphone-based retinal imaging system. This applica-
tion has two components: (1) an algorithm that checks the qual-
ity of the images and (2) a mechanism that generates an 
image-level diagnosis (or not) of DR. If an image is of marginal-
to-poor quality, the image quality notification function flagged 
the image. However, this function could be overridden manu-
ally, allowing all patient image sets to be assessed. If at least one 
image in one eye was positive for any level of DR using the 
Medios AI software, the patient had a positive DR result.

All images captured by the two smartphones were evalu-
ated further at a later date in masked fashion by two experi-
enced retinologists (GES, JJW) for the presence or absence 
of DR. The DR status of the patients was determined using 
the images alone. When the two retinologists did not agree, a 
third, adjudicating retinologist (JB) evaluated the images to 
determine the presence or absence of DR.

The “ground truth” presence or absence of DR for each 
patient was determined using the photographic image deter-
mination combined with their clinical examination result. 
The “true” presence of DR was defined as any DR observed 
on clinical examination or DR missed on clinical examina-
tion but identified on one or more photographs by the two 
masked readers. The “true” absence of DR was defined as a 
negative clinical examination (ie, no degree of DR observed) 
combined with both masked readers not detecting any degree 
of DR in any photographs from either eye of the patient.
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For the online analysis (after the campaign and masked 
review of images), all images (JPEGs) were uploaded to the 
Remidio confidential website and then sent to Eyenuk for 
analysis using an automated process with machine learning-
enabled software, EyeArt v2.1. The architecture, data com-
position, and clinical validation studies for the Medios18,20 
and EyeArt algorithms13,21 have been described. Each grad-
able patient was given a diagnosis (or not) of DR.

The Medios and EyeArt results were compared individu-
ally with the “true” presence or absence of DR (per the above 
criteria). A head-to-head comparison was performed in the 
limited number of patients for whom every image was 
deemed to be of good quality by Medios and whose image 
set was deemed to be gradable by EyeArt. This allowed for 
an “apples-to-apples” comparison, where all of the patient-
level image criteria were met by both AI systems.

Statistical Analysis

The efficacy of the two software programs was evaluated 
using the following metrics: sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
positive likelihood ratio (LR+), negative likelihood ratio 
(LR−), and Youden’s J statistic (combines sensitivity and 
specificity into a single measure of each of the algorithm’s 
performance). The closer J is to 1, the closer the software is 
to having no false positives and no false negatives. Each of 
these metrics provides unique insight into the performance 
of the diagnostic test.22

Apparent prevalence of DR was calculated as the number 
of patients who tested positive divided by the total number of 
patients tested. The Rogan-Gladen estimator23 was used to 
approximate true prevalence. An exact 95% confidence 
interval (CI) was calculated using the Clopper-Pearson 

approach for the point estimates of apparent prevalence, true 
prevalence, sensitivity, specificity, PPV, NPV, and Youden’s 
J.24 For LR+ and LR−, 95% CIs were calculated using meth-
ods described by Simel et al.25

Results

Of the 248 patients, 212 were female (mean age 56.4 years 
[range: 5-80]) and 36 were male (mean age 55.9 years [range: 
12-73]). Mean duration of diabetes was 14.7 years (range: 
1-39) among female patients and 12.9 years (range: 5-21) 
among male patients.

A total of 2130 images were acquired. The “ground truth” 
results for the presence or absence of DR were: 129 patients 
were diagnosed as having some level of DR and 119 patients 
did not have any degree of DR. The two masked readers 
agreed on the presence or absence of DR for 92% (228/248) 
of patients; images for 20 patients required the third masked 
reader (JB) to adjudicate and determine the presence or 
absence of any DR.

Of the 248 patients, Medios recognized 82 patients who 
had at least one poor-quality image. However, Medios was 
able to analyze every image, thus yielding a DR determina-
tion on all 248 patients. EyeArt was able to evaluate 46 of 
these patients. Of the 129 patients with “true” DR, the 
Medios software identified 121 patients as having DR and 8 
as not having DR. Table 1 summarizes the performance met-
rics of the Medios software based on these results.

EyeArt was able to evaluate and thus yield a DR determi-
nation in 156 of the 248 patients. The “true” results for the 
presence or absence of DR in this subset of patients deter-
mined that 82 patients had some level of DR; 74 patients did 
not have DR. EyeArt identified 87 patients as having DR and 
69 patients as not having DR. Table 2 summarizes the 

Table 1.  Medios Analysis (N = 248).

Metric Equation Result Point estimate (95% CI)

Apparent prevalence (AP) TP + FP / N 121 + 7 / 248 0.52 (0.45-0.58)
True prevalence AP + (SP − 1) /SP + (SE − 1) 0.52 + (0.94 − 1) / 0.94 + 

(0.94 − 1)
0.52 (0.46-0.58)

Sensitivity (SE) TP / TP + FN 121 / 121 + 8 0.94 (0.88-0.97)
Specificity (SP) TN / TN + FP 112 / 112 + 7 0.94 (0.88-0.98)
PPV TP / TP + FP 121 /121 + 7 0.95 (0.89-0.98)
NPV TN / TN + FN 112 /112 + 8 0.93 (0.87-0.97)
LR+ SE / (1 − SP) 0.94 / 1 − 0.94 15.95 (7.76-32.76)
LR− (1 − SE) / SP (1 − 0.94) / 0.94 0.07 (0.03-0.13)
J statistic SE + SP − 1 0.94 +0.94 − 1 0.879 (0.76-0.95)

Abbreviations: CI, confidence interval; TP, true positive; FP, false positive; SP, specificity (estimated probability that a patient without DR tests as not 
having DR); DR, diabetic retinopathy; SE, sensitivity (estimated probability that a patient with “true” DR tests as having DR); FN, false negative; TN, true 
negative; PPV, positive predictive value (% of positive tests that are TPs); NPV, negative predictive value (% of negative tests that are TNs); LR−, negative 
likelihood ratio (estimate of the probability that a patient who has DR is predicted as not having DR divided by the probability that a patient who does 
not have DR is predicted as not having DR); LR+, positive likelihood ratio (estimate of the probability that a patient with DR is predicted as having DR 
divided by the probability that a patient who does not have DR is predicted as having DR).
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Table 2.  EyeArt Analysis (N = 156).

Metric Equation Result Point estimate (95% CI)

Apparent prevalence (AP) TP + FP / N 77 + 10 / 156 0.56 (0.48-0.64)
True prevalence AP + (SP − 1) / SP + (SE − 1) 0.56 + (0.86 − 1) / 0.86 + 

(0.94 − 1)
0.53 (0.44-0.61)

Sensitivity (SE) TP / TP + FN 77 / 77 + 5 0.94 (0.86-0.98)
Specificity (SP) TN / TN + FP 64 / 64 + 10 0.86 (0.77-0.93)
PPV TP / TP + FP 77 / 77 + 10 0.89 (0.80-0.94)
NPV TN / TN + FN 64 / 64 + 5 0.93 (0.84-0.98)
LR+ SE / (1 − SP) 0.94 / (1 − 0.86) 6.95 (3.89-12.40)
LR− (1 − SE) / SP (1 − 0.94) / 0.86 0.07 (0.03-0.17)
J statistic SE + SP − 1 0.94 + 0.86 − 1 0.804 (0.63-0.91)

Abbreviations: CI, confidence interval; TP, true positive; FP, false positive; SP, specificity (estimated probability that a patient without DR tests as not 
having DR); DR, diabetic retinopathy; SE, sensitivity (estimated probability that a patient with “true” DR tests as having DR); FN, false negative; TN, true 
negative; PPV, positive predictive value (% of positive tests that are TPs); NPV, negative predictive value (% of negative tests that are TNs); LR−, negative 
likelihood ratio (estimate of the probability that a patient who has DR is predicted as not having DR divided by the probability that a patient who does 
not have DR is predicted as not having DR); LR+, positive likelihood ratio (estimate of the probability that a patient with DR is predicted as having DR 
divided by the probability that a patient who does not have DR is predicted as having DR).

performance metrics of the EyeArt software based on these 
results.

A total of 110 patients had image sets that were deemed 
completely to be of good quality by Medios and gradable by 
EyeArt. In this head-to-head comparison, the “true” results 
for the presence or absence of DR were: 76 patients had 
some level of DR and 34 patients did not have DR. Table 3 
summarizes the performance metrics of the head-to-head 
comparison of the Medios results and the EyeArt results.

Discussion

This is the first analysis to compare the head-to-head perfor-
mance of two AI algorithms for detecting the presence of any 
degree of DR in a field setting using a portable fundus cam-
era. Although a real-world, head-to-head analysis comparing 
multiple AI DR screening algorithms has been published, the 
analysis was performed on images obtained with a nonport-
able fundus camera in two strictly controlled Veterans’ 
Affairs primary care clinical environments and did not 
include the Medios AI algorithm.26 To our knowledge, our 
analysis is the first to use the Medios and EyeArt AI algo-
rithms to analyze images from patients of Spanish-Mexican 
and Mayan descent in the Yucatan Peninsula, each having a 
distinct genetic phenotype.

The offline smartphone-based Medios AI algorithm was 
highly sensitive and specific for detecting the presence or 
absence of DR in binary fashion. These results are consistent 
with those from previous studies.12,18,20,27 For the Medios AI 
analysis, the sensitivities and specificities of 0.94 and 0.94 
for all 248 patients and 0.99 and 0.88 for the 110 patients in 
the head-to-head comparison were comparable with those 
detecting any DR in patients of Indian descent.12,18

For the cloud-based EyeArt AI algorithm analysis, the 
sensitivities and specificities of 0.94 and 0.86 for 156 patients 

with all gradable images and 0.95 and 0.88 in the head-to-
head comparison of 110 patients were comparable with the 
results of previous reports for the presence of any DR and 
sight-threatening DR for English,28-30 Indian,21 and American 
patients.31,32 Interestingly, both AIs had similar sensitivities 
and specificities despite being trained by different method-
ologies.13,22,23 This is made more remarkable because DR 
phenotypes differ by region and ethnicity,3 and the two AI 
algorithms used in this analysis were trained on different 
international DR data sets of patients of Indian descent14,20,27 
for Medios and of American and Northern Mexican 
descent13,33 for EyeArt.

Because three inexperienced graduate students were 
tasked as camera operators, we confirmed that once they 
became familiar with the technology, the Remidio-FOP cam-
era with accompanying Medios AI was easy to use, as previ-
ously described.12,20 Interestingly, all 248 patients had images 
that Medios was able to analyze. This can be explained by its 
proprietary, two-step process: (1) an upstream image quality 
module with a per image notification function and (2) a 
downstream image automated analysis application module 
trained to recognize any sign of DR. Sensitivity increases at 
the potential expense of specificity. Although any image set 
could be deemed of marginal quality based on a single image 
of poor quality, the images could still be subjected to the 
evaluation module at the camera operator’s discretion. Thus, 
Medios was able to evaluate all 248 patients, even though 82 
patients had at least one poor-quality image. Only 67% of 
patients had a complete set of good-quality images. While 
there may be potential safety issues (eg, increased number of 
false negatives) with a strategy that allows for the analysis of 
images of marginal-to-poor quality, the overall benefit in an 
outreach field setting—where media opacities, patient com-
pliance, and image acquisition speed have a greater impact—
cannot be marginalized. Many of the 82 patients with 
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Table 3.  Head-to-Head (Medios/EyeArt) Performance (N = 110).

Metric Equation Result Point estimate (95% CI)

Apparent prevalence (AP) TP + FP / N 75 + 4 / 110
74 + 4 / 110

0.72
0.69

(0.62-0.80)
(0.60-0.78)

True prevalence AP + (SP − 1) / SP + (SE − 1) 0.72 + (0.88 − 1) / 0.88 + 
(0.99 − 1)

0.69 + (0.88 − 1) / 0.88 + 
(0.95 − 1)

0.69
0.69

(0.60-0.78)
(0.60-0.78)

Sensitivity (SE) TP / TP + FN 75 / 75 + 1
74 / 74 + 4

0.99
0.95

(0.93-1.00)
(0.87-0.99)

Specificity (SP) TN / TN + FP 30 / 30 + 4
30 / 30 + 4

0.88
0.88

(0.73-0.97)
(0.73-0.97)

PPV TP / TP + FP 75 / 75 + 4
75 / 75 + 4

0.95
0.95

(0.88-0.99)
(0.87-0.99)

NPV TN / TN + FN 30 / 30 + 1
30 / 30 + 4

0.97
0.88

(0.83-1.00)
(0.73-0.97)

LR+ SE / (1 − SP) 0.99 / (1 − 0.88)
0.95 / (1 − 0.88)

8.39
8.05

(3.34-21.07)
(3.20-20.25)

LR− (1 − SE) / SP (1 − 0.99) / 0.88
(1 − 0.95) / 0.88

0.01
0.06

(0.00-0.10)
(0.02-0.16)

J statistic SE + SP − 1 0.99 + 0.88 − 1
0.95 + 0.88 − 1

0.869
0.830

(0.65-0.97)
(0.60-0.95)

Abbreviations: CI, confidence interval; TP, true positive; FP, false positive; SP, specificity (estimated probability that a patient without DR tests as not 
having DR); DR, diabetic retinopathy; SE, sensitivity (estimated probability that a patient with “true” DR tests as having DR); FN, false negative; TN, true 
negative; PPV, positive predictive value (% of positive tests that are TPs); NPV, negative predictive value (% of negative tests that are TNs); LR−, negative 
likelihood ratio (estimate of the probability that a patient who has DR is predicted as not having DR divided by the probability that a patient who does 
not have DR is predicted as not having DR); LR+, positive likelihood ratio (estimate of the probability that a patient with DR is predicted as having DR 
divided by the probability that a patient who does not have DR is predicted as having DR).

marginal-quality images had obvious DR stigmata identified 
by the two masked readers. However, portions of the image 
often were partially obscured by vitreous or preretinal hem-
orrhage, asteroid hyalosis, or cataract; thus, the images were 
deemed to be of marginal quality. The greater acquisition of 
fundus images, including those of marginal quality, can 
potentially improve the quality of the screening process by 
identifying more patients with sight-threatening DR and per-
haps early DR.

EyeArt evaluated 63% (156/248) of the patients, primar-
ily owing to camera operator error. During the screening 
campaign, the three camera operators were untrained and not 
familiar with EyeArt’s mandatory image-specific and 
patient-specific capture criteria.21 EyeArt processes are 
designed to produce patient-level results, not individual 
image-level results. Therefore, if any image was considered 
ungradable, the entire patient encounter was deemed ungrad-
able because EyeArt does not skip ungradable images. 
Similar to Medios, EyeArt is trained to reduce the incidence 
of false negatives. However, EyeArt has a one-step AI algo-
rithm that combines image quality/gradeability and image 
analysis for the presence of disease. As such, variations in 
image alignment, resolution, and exposure; not having a 
macula-centered image per eye; monocular status; or having 
>14 images per patient resulted in an ungradable encounter 
and a recommendation for referral to an eye specialist.

The high rate of ungradable images by EyeArt is in con-
trast to the results of a study conducted in primary care, gen-
eral ophthalmology, and retina specialty centers with trained 
photographers using a nonportable tabletop Canon camera.33 
This study, which excluded participants with persistent 
visual impairment, demonstrated a 97.4% dilated eye grad-
able rate.32 Another possible reason for EyeArt’s high 
ungradable rate was the high incidence of media opacities 
observed. Incidence rates for these conditions tend to be 
higher in underserved outreach field settings. In addition, 
these imaging factors underscore the need for dilation in an 
outreach setting, as the incidence of ungradability has been 
shown to be substantially higher for nonmydriatic vs mydri-
atic images.32,34

In the head-to-head comparison—where all images for 
every patient were deemed of sufficient quality for grading 
by both AI algorithms—the sensitivity, specificity, and 
PPVs/NPVs of Medios and EyeArt were comparable and 
highly accurate. This very high degree of DR detection accu-
racy (ie, sensitivity) may be a function, at least in part, of the 
high DR prevalence (69%) in this cohort. These results are 
not typical in Western populations and are more representa-
tive of underserved populations. The high degree of sensitiv-
ity also could be linked to the screening of patients of 
Mexican-Spanish and Mayan descent who have a greater 
degree of background contrast from choroidal melanin and 
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fundus hyperpigmentation, which is often not seen in the 
blonde fundi of Western populations.19 This also is in con-
trast to a study showing lower specificities when a signifi-
cant portion of the screened population had mild 
nonproliferative retinopathy or no retinopathy.29 Thus, pro-
vided that online access is available, either AI algorithm 
should be adequate at providing a relatively immediate and 
robust determination of the presence or absence of DR in a 
large-scale outreach campaign.

The primary limitation of this analysis is that the defini-
tion of “ground truth” DR was unconventionally determined 
by clinical examination findings combined with image anal-
ysis performed by two masked, fellowship-trained, vitreo-
retinal specialists, each with >30 years’ experience. In 
previous reports evaluating both AI algorithms, three 45° and 
four wide-field tabletop fundus photographs evaluated by 
masked or expert readers were used to define “ground truth” 
DR.12,32 However, these conventional methods were not fea-
sible in a large-scale, real-world, five-day DR screening 
campaign in an outreach setting. Furthermore, by adding the 
clinical examination (including a 20-diopter indirect oph-
thalmoscopic evaluation) into the definition of “ground 
truth” DR, eyes with DR primarily limited to the pre-equato-
rial fundus were properly characterized. Although both AI 
algorithms were trained using only images of the posterior 
pole, the pattern recognition and deep-learning ability of 
each algorithm could potentially allow each to grade an 
image as having some degree of DR in the absence of any 
classic stigmata of DR visible to the naked eye on a photo-
graphic image. Pathology, including microvascular ischemia 
(in the absence of microaneurysm, intraretinal hemorrhage, 
or cotton wool spot), choriocapillary ischemic thinning, and 
primary neuronal cell loss may lead to retinal thinning, which 
is only recognizable by deep learning. As such, our definition 
of “ground truth,” which accounts for these possibilities, 
potentially increased the accuracy of the results.

Other limitations included using untrained camera operators 
pressed for time and screening a smaller number of patients who 
had images deemed acceptable by both AI algorithms. This 
analysis was limited to detecting any degree of DR in a binary 
fashion and did not include grading the level of retinopathy if 
present. This was necessary, as the clinical examination reports 
did not segregate referable DR from mild nonproliferative DR. 
In addition, Medios is only trained to recognize the presence of 
moderate nonproliferative diabetic retinopathy or worse or no 
DR as a binary outcome. Nonetheless, detecting any level of DR 
in this underserved and likely poorly controlled population with 
diabetes takes on an added level of importance where rapid dia-
betic retinal disease progression and blindness from cataract 
formation and glaucoma are more probable.35

Conclusions

Our results demonstrate that both Medios and EyeArt 
AI-enabled algorithms can be effective in achieving high 

accuracy in an outreach field setting where portable fundus 
cameras are used and where medical professionals and other 
resources are limited. These robust findings suggest this same 
methodology of DR screening could be readily implemented 
in any office setting or location in the United States. The ben-
efit of immediately determining, in an offline manner with 
Medios, the presence or absence of DR cannot be overstated. 
Both AIs should be considered equally viable options in 
large-scale DR screening campaigns where rapid results are 
needed and, in the case of EyeArt, online access is possible.

Abbreviations

AI, artificial intelligence; AP, apparent prevalence; CI, confidence 
interval; DR, diabetic retinopathy; FN, false negative; FOP, fundus 
on phone; FP, false positive; LR−, negative likelihood ratio; LR+, 
positive likelihood ratio; NPV, negative predictive value; PPV, 
positive predictive value; SE, sensitivity; SP, specificity; TN, true 
negative; TP, true positive.
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Purpose: This study aimed to determine the generalizability of an artificial intelligence  (AI) algorithm 
trained on an ethnically diverse dataset to screen for referable diabetic retinopathy (RDR) in the Armenian 
population unseen during AI development. Methods: This study comprised 550  patients with diabetes 
mellitus visiting the polyclinics of Armenia over 10 months requiring diabetic retinopathy (DR) screening. 
The Medios AI‑DR algorithm was developed using a robust, diverse, ethnically balanced dataset with no 
inherent bias and deployed offline on a smartphone‑based fundus camera. The algorithm here analyzed the 
retinal images captured using the target device for the presence of RDR (i.e., moderate non‑proliferative 
diabetic retinopathy (NPDR) and/or clinically significant diabetic macular edema (CSDME) or more severe 
disease) and sight‑threatening DR (STDR, i.e., severe NPDR and/or CSDME or more severe disease). The 
results compared the AI output to a consensus or majority image grading of three expert graders according 
to the International Clinical Diabetic Retinopathy severity scale. Results: On 478 subjects included in the 
analysis, the algorithm achieved a high classification sensitivity of 95.30%  (95% CI: 91.9%–98.7%) and a 
specificity of 83.89% (95% CI: 79.9%–87.9%) for the detection of RDR. The sensitivity for STDR detection 
was 100%. Conclusion: The study proved that Medios AI‑DR algorithm yields good accuracy in screening 
for RDR in the Armenian population. In our literature search, this is the only smartphone‑based, offline AI 
model validated in different populations.

Key words: Artificial Intelligence, deep learning, diabetic retinopathy, eye screening

Diabetic retinopathy  (DR), a microvascular complication 
of diabetes mellitus  (DM), is one of the leading causes of 
preventable blindness. It is estimated that 642 million people 
would be living with diabetes by 2040 worldwide.[1] The global 
prevalence of DR among people with diabetes is 34.6%, and it 
is 10.2% for sight‑threatening diabetic retinopathy (STDR).[2] 
Over the past decade, the number of people with diabetes 
has increased.[1] Such high numbers not only pose a great 
economic burden but also create an ever‑increasing demand 
for accessible eye care. Artificial intelligence  (AI) can help 
bridge the otherwise widening gap between ophthalmologists 
and patients.

Current deep learning (DL)‑based AI algorithms have shown 
performances approaching that of clinicians in detecting DR.[3–7] 
This encourages the deployment of such systems to reduce the 
burden on ophthalmologists. There is a requirement across 
all geographies to tackle the global problem of preventable 
blindness. It is thus important to focus on unbiased and robust 

AI systems, which work equally well across ethnicities and 
populations.

Patient attributes, such as race/ethnicity, can introduce 
biases in AI systems, and these biases pose significant 
challenges in the development of AI‑based models for DR 
screening. It is crucial for effective solutions deployed in 
different geographies to demonstrate consistent accuracy 
across diverse populations.[4,8,9] It should be noted that ethnic 
groups with darker skin tend to have higher melanin content 
within their uveal melanocytes, resulting in darker fundus 
pigmentation.[10,11] Consequently, although DR lesions are 
similar across all ethnic groups, the background color of the 
fundus can make these lesions more or less distinct. Thus, 
fundus pigmentation may also impact the interpretation of 
AI systems.[10]

We hypothesize that an AI algorithm can generalize 
across different populations. This should hold true even if 
the population is not represented in the training set. This 
assumption relies on an ethnically balanced and diverse 
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dataset. The Medios AI‑DR is an offline, smartphone‑based 
algorithm trained on a diverse dataset that did not include 
Armenian eyes. We report here the accuracy of this algorithm 
on an Armenian population for the detection of referable 
diabetic retinopathy  (RDR). The scope of the DR screening 
program in Armenia falls under the aegis of the Armenian Eye 
Care Project (AECP) team in cooperation with the Armenian 
Ministry of Health and the World Diabetes Foundation with 
an aim to end preventable blindness due to DR.[12] The AECP 
project is part of a larger initiative led by this team to ensure 
accessible eye care for all Armenians.

Methods
This retrospective study was approved  (IRB approval no.: 
N4‑3/2020) by the institutional ethics committee. It was 
performed according to the tenets of the Declaration of 
Helsinki.

Study Population Sampling and Imaging Protocol: Patients 
with established diabetes attending the polyclinics of Armenia 
for DR screening were included in this study. The images were 
captured using the Fundus‑on‑Phone (FOP NM‑10, Remidio 
Innovative Solutions), a smartphone‑based fundus camera 
with a field of view of 40°, and collected over a 10‑month 
period between July 2019 and April 2020. The study population 
included 550 consecutive subjects. Subjects with no established 
ground truth diagnosis were excluded.

Retinal image acquisition: The images were captured by 
non‑medically trained operators in real‑world conditions. 
The imaging protocol consisted of acquiring one disc and one 
macula‑centered image per eye of each patient without dilation. 
This was performed during routine DR screening. Repeat images 
were captured when required to ensure sufficient image quality.

Image Grading: The consensus or majority image grading of 
three expert graders, two fellowship‑trained ophthalmologists, 
and one certified optometrist formed the reference standard for 
assessing the AI algorithm. One grader, a fellowship‑trained 
ophthalmologist, provided image‑based diagnosis during 
the screening program. In total, 53 patients had no consensus 
after grading by the three graders. They were presented to 
two senior retina specialists, whose adjudicated diagnosis was 
deemed final. All graders were masked to the Medios AI‑DR 
output and to each other’s grading. The de‑identified images 
were graded for the stage of DR and the presence of diabetic 
maculopathy. The International Clinical Diabetic Retinopathy 
classification was used to grade images. The images were 
graded as either no DR, mild non‑proliferative DR  (mild 
NPDR), moderate non‑proliferate DR (moderate NPDR), severe 
non‑proliferate DR (severe NPDR), proliferative DR (PDR), or 
ungradable. The graders also looked for hard exudates within 1 
disc diameter of the fovea center. This was used as a surrogate 
marker for the presence of clinically significant diabetic macular 
edema (CSDME), which is considered a standard guideline in 
a screening context in the absence of stereo imaging.[13–15] An 
image was deemed ungradable if a reliable diagnosis of DR 
was not possible. This could happen in two distinct scenarios: 
1) if major vessels could not be clearly identified, or 2) due to 
blurring, artifacts, under/over‑exposure, or glare spanning half 
or more of the image. The patient‑level diagnosis was inferred 
by the DR stage of the more affected eye. The consensus grading 
for each patient formed the final diagnosis. RDR was defined 

as moderate NPDR or higher severity and/or the presence of 
CSDME. STDR was defined as severe NPDR or higher severity 
and/or the presence of CSDME.

AI‑based software architecture: The Medios AI‑DR consists 
of an ensemble of two convolutional neural networks based on 
the Inception‑V3 architecture. It classifies color fundus images 
for the presence of RDR. The detailed software architecture 
has been previously published.[6] In brief, the training set 
consisted of 52,894 images as follows: 34,278 images were 
obtained from the Eye Picture Archive Communication System 
telemedicine program (EyePACS LLC, Santa Cruz, California). 
In total, 14,266 mydriatic images were captured using a Kowa 
VX‑10α (Kowa American Corporation, CA, USA) at a tertiary 
diabetes center in India, and 4350 non‑mydriatic images were 
taken in mass screening camps in India by using the Remidio 
FOPNM‑10. The dataset was curated to contain as many referral 
cases as healthy ones.

Automated image analysis: The analysis was performed 
on the FOP NM10 with offline Medios AI‑DR that does not 
require internet to provide a report. The de‑identified images 
were loaded through Remidio’s secure cloud connectivity 
system. The Medios AI‑DR was manually run as per standard 
protocol. Following an automated analysis of image quality, 
each patient underwent an automated analysis for DR. The AI 
output No RDR or RDR, as well as the image quality analysis 
results, were noted. The “proceed anyway” override option was 
used for images that failed the AI quality check but received a 
consensus grading by the experts.

Outcome measure: The primary outcome measures were 
the sensitivity, specificity, false positives, false negatives, 
and predictive values  (positive and negative) of the Medios 
AI‑DR algorithm for detecting RDR on images captured using 
FOPNM‑10 on this population. The secondary outcome measures 
were the sensitivity, specificity, and predictive values (positive 
and negative) of the algorithm for detecting any grade of DR. 
In addition, the sensitivity for detecting STDR was reported.

Statistical analysis: Considering a sensitivity of at least 80% 
with a precision of 10% and a prevalence of RDR of 20%, the 
required sample size was 308 patients for a 95% confidence 
interval.[16] We, however, looked at a larger sample size of 
550 patients imaged over 10 months.

Next, 2  *  2 confusion matrices were used to compute 
the sensitivity  (true positive  [TP] rate) and specificity  (true 
negative [TN] rate) to detect RDR, any stage of DR, and STDR. 
The positive predictive value (PPV) and the negative predictive 
value  (NPV) were evaluated. Furthermore, 95% confidence 
intervals (CI) were calculated for sensitivity, specificity, NPV, 
and PPV. The false positive  (FP) rate was calculated as FP/
FP + TN. The false negative rate was calculated as FN/FN + TP. 
The kappa statistic was used to determine the agreement 
between each expert grader to the consensus grading. A kappa 
value of above 0.8 was considered as high agreement, between 
0.5 and 0.79 as moderate, and below 0.5 as poor agreement. 
Data were analyzed using the pandas (1.1.0), NumPy (1.19.5), 
and scikit‑learn (0.23.1) libraries in Python (ver 3.7.7).

Results
The mean age in this study cohort of 550 subjects was 
61.6  ±  9.94  years  (range: 12–83  years). Among them, 
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63.45% (n = 349) were females. In the final analysis, 478 subjects 
were included after excluding duplicate entries  (n  =  6) and 
patients deemed ungradable (n = 66) [Fig. 1].

Based on consensus image diagnosis by experts, any 
DR was present in 159  (33.26%) patients, RDR was seen in 
149 patients (31.17%), and STDR in 62 patients (12.97%). The 
intergrader agreement  (quadratic weighted kappa) between 
the individual certified experts and the majority diagnosis was 
moderately good (0.56–0.72).

In total, 478 subjects were fed to the AI to generate outputs 
for the presence or absence of RDR. The sensitivity for RDR was 
95.30 % (95% CI: 91.9%–98.7%) and specificity was 83.89% (95% 
CI: 79.9%–87.90%). The NPV, that is, the probability of a subject 
with a negative screening test by the AI to truly not have RDR, 
was high (97.53%, 95% CI: 95.7%–99.3%). The key performance 
metrics for Medios AI‑DR on the Armenian population are 
listed in Tables 1A and 1B.

The AI made a false diagnosis of RDR in 53 subjects. Four 
subjects had a consensus grading of mild NPDR, and the other 
49 subjects had a consensus grading of no DR by the graders. 
Thus, the false positive rate was 16.11%. Among the 53 subjects, 
17 were graded with AMD by at least one of the graders, while 
another nine were graded as having another pathology.

All the seven subjects falsely diagnosed as RDR‑negative 
cases by the AI were moderate NPDR cases. The false‑negative 
rate was 4.70%. No cases of STDR were missed  (100% 
sensitivity). Fig.  2 shows examples of subjects diagnosed 
correctly and incorrectly by the AI for RDR.

Discussion
This study showed the clinical effectiveness of the Medios 
AI‑DR algorithm in detecting RDR in an Armenian population, 
reproducing its results from previous validation studies on 
the Indian population  [Table  2]. The study highlighted the 
generalizability of this offline system in an ethnic population 
unseen during training. The study revealed excellent 
sensitivity (95.30%) and acceptable specificity (83.89%) for RDR.

The current study demonstrated a 100% sensitivity for 
sight‑threatening DR. This subgroup entails patients at 
immediate risk of blindness if left untreated. Hence, this result 
supports the use of the Medios AI‑DR as an aid in the early 
diagnosis of RDR. Thus, the specialists could focus on the 
treatment of patients with sight‑threatening diseases rather 
than on screening. This is particularly valuable in regions with 
low density of ophthalmologists. This conclusion is further 
supported by a low false negative rate of 4.70%  (7  cases of 
moderate NPDR missed), a parameter critical to denote the 
safety of the AI system. DR is understood to progress slowly 
in its early stages. The risk of missing such cases is mitigated 
by a recommendation for follow‑up screenings every year.

The study showed 53 false positives  (49 with no DR and 
4 with mild NPDR). Furthermore, among the 53 subjects, 17 
were graded with AMD by at least one of the graders, while 
another nine were graded as having another pathology. The 
accuracy is comparable to our findings on Indian cohorts.[6,7,17] 

Table 1A: Confusion matrix to evaluate Medios AI‑ DR 
performance for RDR

n=478 Image grading 
RDR positive

Image grading 
RDR negative

AI RDR positive 142 (29.7%) 53 (11.1%)
AI RDR negative 7 (1.5%) 276 (57.7%)

Figure 1: STARD Diagram for Medios AI‑DR output for RDR
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We hypothesize that retinal pigmentation did not affect the 
system’s performance. The large and diverse dataset used 
during development ensured representation across dark to 
lightly pigmented retinas. Here, the misdiagnosis is rather 

explainable by the presence of other pathologies being picked 
up by the AI (26/53, 49%) as referable diseases. We are currently 
in the process of deploying other disease‑specific models such 
as AMD, which will address this in the near future. Graders, 

Table 1B: Performance of Medios AI‑DR on the Armenian population

RDR Any DR STDR

Sensitivity (95% CI) 95.30% (91.9%–98.7%) 91.82% (87.6%–96.1%) 100.00 (1.0–1.0)

Specificity (95% CI) 83.89 (79.9%–87.9%) 84.64% (80.7%–88.6%) NA

PPV (95% CI) 72.82% (66.6%–79.1%) 74.87% (68.8%–81.0%) NA
NPV (95% CI) 97.53% (95.7%–99.3%) 95.41% (93.0%–97.8%) NA

Table 2: Performance of Medios AI‑DR in screening for RDR in previous studies

Study Ethnicity Sensitivity Specificity

Natarajan et al.[6] Indian 100.0% (95%CI: 78.2%–100.0%) 88.4% (95% CI: 83.2%–92.5%)

Sosale et al.[7] (SMART Study) Indian 93% (95% CI: 91.3%–94.7%) 92.5% (95% CI: 90.8%–94.2%)

Sosale et al.[17] Indian 98.84% (95% CI: 97.62%–100%) 86.73% (95% CI: 82.87%–90.59%)
Current Study Armenian 95.30% (91.9%–98.7%) 83.89% (79.9%–87.9%)

Figure 2: Examples of False Negative, True Negative, False Positive and True Positive patient images analyzed for RDR using Medios AI- DR. 
Activation maps are shown for images with positive AI diagnosis
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however, only reported the status of DR. The presence of another 
retinal disease warranting a referral to a specialist and triggering 
a positive report by the AI thus cannot be ruled out. The false 
positive rate is within acceptable limits. The FDA‑mandated 
superiority endpoints of 85% sensitivity and 82.5% specificity 
for an autonomous RDR AI were surpassed in this study.[14,15]

Previous studies have reported that a lack of ethnic diversity 
in training data impacted the performance of AI‑based systems 
across ethnicities.[10] Varying concentrations of melanin in 
different ethnic groups affect the pigmentation of uveal 
melanocytes as well.[11] A different contrast between fundus 
and DR lesions due to a varying color of fundi may affect 
the performance of AI algorithms. AI systems should thus 
be trained on data from various ethnic groups to reduce bias 
toward a particular group. This is of particular importance 
when considering the deployment of systems across many 
geographies.

The Medios AI‑DR had previously been validated in cohorts 
visiting primary and tertiary care centers in India only. Most 
studies relied on real‑world images captured by minimally 
trained operators. They showed a sensitivity of 93%–100% 
and a specificity of 86.7%–92.5% [Table 2].[6,7,17] Though these 
studies demonstrated the consistency of the algorithm in 
different clinical settings and the community, these had 
not assessed its consistency across different ethnicities. The 
current study complements the earlier one and demonstrates 
generalizability to a new population, with good sensitivity 
and specificity. There are some reports of the use of ethnically 
diverse training datasets on the AI‑based detection of RDR. 
Bellemo et al.[9] reported a sensitivity of 92.25% and a specificity 
of 89.04% in detecting RDR in an African cohort by using 
an AI algorithm trained with images predominantly from 
Chinese, Malay, and Indian populations. The system showed 
consistency and generalizability in detecting RDR in patients 
with dark fundi of the African population.[9] We are unsure 
if the good sensitivity and specificity were related to the AI 
training dataset that also included the Indian eyes. Both Indian 
and African groups rank higher in melanin synthesis and 
have nearly similar dark‑colored fundi. Similarly, Ting et al.[4] 
reported a sensitivity of 90.5% and a specificity of 91.6% in 
identifying RDR in a multi‑ethnic population. Again, these 
investigators had included images from Indian, Chinese, 
and Malay populations. The validation set further comprised 
African‑American, Caucasian, and Hispanic populations with 
additional multi‑ethnic validation datasets. All these studies 
indicate a common pattern: a sufficiently diverse training 
set can lead to generalizability beyond the ethnic groups 
included during training. While this hypothesis is reinforced 
in this study, we evaluated the AI performance in a different 
low‑resource population that has significant accessibility issues 
for DR screening. To our knowledge, there is no peer‑reviewed 
published evidence  (MEDLINE literature search) on the 
performance of AI on images captured in a real‑world 
diabetic screening program in Armenia. In addition, on the 
technical front, the Medios AI‑DR is a lightweight ensemble 
architecture that utilizes a low processor environment of a 
smartphone‑based fundus camera, allowing it to be deployed 
on the edge on the device. This could overcome barriers of 
internet connectivity and cloud‑based inferencing in limited 
resource settings.

Strengths: First, the Medios AI‑DR algorithm for RDR 
has been developed with over  50,000 images, which also 
included 34,278 images from the Kaggle‑EyePACS dataset. The 
Kaggle‑EyePACS dataset includes populations of indigenous 
American, African, European, Asian, and Indian subcontinent 
descent by design. It does not have any inherent issues with 
diversity or bias.[18,19] This could partly explain the absence 
of bias in this algorithm when used on both dark and lightly 
pigmented fundi. The results of this study further strengthened 
this statement. Second, this study truly captured real‑world 
data where images were captured by minimally trained 
operators. Thus, the AI was subject to test on images of par 
quality unlike the pristine images obtained in the clinic where 
the performance will be far better.

Limitations: This is a retrospective study with inherent 
limitations attributable to any retrospective study. A notable 
limitation was the absence of a “live” AI quality check and 
feedback to the operator to recapture images. This implied that 
the study did not follow the exact protocol of two sufficient 
quality images per eye (one disc and one macula centered) in 
all patients, as required for optimum AI performance results. 
Instead, the study used all images captured (up to 7 images per 
patient) from multiple capturing attempts giving the worst‑case 
scenario results. Inclusion of all available images might have also 
adversely affected the sensitivity and specificity. In addition, 
an accurate assessment of the image quality algorithm was not 
possible. A prospective trial would have been ideal to assess 
the best performance of the algorithm. The DR AI algorithm 
and image grading at least relied on two 40° fields of view 
per eye – one macula and one disc‑centered image (covering 
approximately 60° field of view), potentially overlooking a few 
instances of severe DR extending beyond the captured area, 
particularly affecting the nasal region or extending beyond 
major blood vessel arcades. However, utilizing non‑mydriatic 
single or two‑field fundus photography for DR screening aligns 
with the acceptable practices recommended by the International 
Council of Ophthalmology as well as the American Academy 
of Ophthalmology Guidelines.[20,21]

Conclusion
There is evidence that a training set biased against a specific 
ethnic group does not generalize well beyond that group.[10] 
However, others and we have shown that an AI algorithm 
trained with an ethnically diverse dataset overcomes this 
deficiency.[4,9] In addition, we feel that additional investigations 
are needed to evaluate variations of fundus pigmentation 
across ethnicities and understand the similarities and 
differences to develop robust AI solutions by using retinal 
images.
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ABSTRACT
Objective  Several artificial intelligence (AI) systems 
for diabetic retinopathy screening have been validated 
but there is limited evidence on their performance in 
real-world settings. This study aimed to assess the 
performance of an AI software deployed within the diabetic 
retinopathy screening programme in Dominica.
Methods and analysis  We conducted a prospective, 
cross-sectional clinical validation study. Patients with 
diabetes aged 18 years and above attending the diabetic 
retinopathy screening in primary care facilities in Dominica 
from 5 June to 3 July 2021 were enrolled.
Grading was done at the point of care by the field grader, 
followed by counselling and referral to the eye clinic. 
Images were then graded by an AI system. Sensitivity, 
specificity with 95% CIs and area under the curve (AUC) 
were calculated for comparing the AI to field grader as gold 
standard.
Results  A total of 587 participants were screened. The 
AI had a sensitivity and specificity for detecting referable 
diabetic retinopathy of 77.5% and 91.5% compared 
with the grader, for all participants, including ungradable 
images. The AUC was 0.8455. Excluding 52 participants 
deemed ungradable by the grader, the AI had a sensitivity 
and specificity of 81.4% and 91.5%, with an AUC of 
0.9648.
Conclusion  This study provides evidence that AI has 
the potential to be deployed to assist a diabetic screening 
programme in a middle-income real-world setting and 
perform with reasonable accuracy compared with a 
specialist grader.

INTRODUCTION
Diabetic retinopathy (DR) is the most 
common microvascular complication of 
diabetes mellitus. It is a major cause of vision 
impairment and blindness.1 Retinal screening 
and referral for treatment for those identified 
having DR can prevent vision loss.2–5 For this 
reason, many countries are introducing DR 
screening and treatment programmes.6–8

A recent systematic review of DR screening 
found that in low-income and middle-income 

countries (LMIC), common barriers include 
limited skilled human resources and lack of 
access to eye facilities.9 Use of artificial intel-
ligence (AI) for grading of retinal images 
could help to reduce the time spent by 
ophthalmic specialists reviewing images.10 11 
AI in DR screening can allow quick assess-
ment of a large number of images and 
communication of the decision to refer, or 
not, to the patients at the point of care, and 
in the last few years these technologies have 
started to be validated.12–14 As the quality of 
smartphone cameras improves, there has 
been investment and research into their use 
as portable retinal cameras, offering a lower 
cost and transportable option in low resource 
and rural settings.15

Four recent meta-analyses reported sensi-
tivities for AI to grade DR between 87% and 
97%.16–19 Most studies reported AI systems 
which used datasets from high-quality images 
taken with state-of-the-art retinal cameras in 
eye clinic settings. Some studies, including a 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Many diabetic retinopathy (DR) algorithms have 
been shown to perform with high accuracy when 
compared with human grading, but limited evidence 
has been published on real-world validation of artifi-
cial intelligence (AI) for DR.

WHAT THIS STUDY ADDS
	⇒ The study reports on the performance of AI for DR 
when deployed in real-world conditions in an exist-
ing DR programme in a middle-income setting.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ At national level in Dominica, this study will inform 
policy and practice in service delivery for DR ser-
vices. Globally, this study builds on the evidence in 
application of AI in real-world settings.
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large-scale real-world use of AI in Thailand, have assessed 
community screening in field settings, reporting sensitiv-
ities between 84% and 91% for referable DR and 91% for 
vision threatening DR.20–22

The prevalence of diabetes in the adult population in 
Dominica is estimated to be 17.7%.23 Dominica has been 
screening for DR since 2005, but its programme coverage 
is limited with approximately 1500 of the estimated 
7000 adults living with diabetes being screened each 
year. There are two employed ophthalmic technicians in 
the public sector in Dominica certified to grade retinal 
images, but their time to screen DR is limited by other 
clinical duties. There are two retinal cameras, one fixed 
(Centervue DRS) in a hospital in Roseau, the capital, and 
a smartphone camera (Remidio) used in a mobile clinic 
that visits rural districts. The ophthalmology services in 
Dominica are equipped to deliver treatment to patients 
with vision threatening DR.

AI-assisted grading in the mobile clinic could help 
overcome human resources constraints and increase 
DR screening coverage. There is an AI software applica-
tion that can be used offline with the smartphone-based 
‘Fundus on Phone’ retinal camera currently used in 
Dominica.24 Studies in India using this AI software and 
camera have reported a sensitivity of 83% to detect 
any DR, and a sensitivity of 93% to detect ‘referable’ 
DR.25–27

This study aimed to evaluate the diagnostic accuracy of 
Medios AI software for the diagnosis of referable diabetic 
retinopathy (RDR) using mydriatic retinal images when 
deployed and integrated in a real-world DR screening 
programme in a Caribbean population in Dominica.

MATERIALS AND METHODS
Study design
This prospective, cross-sectional clinical validation study 
was conducted to assess the performance of an AI soft-
ware application in identifying referable DR, compared 
with a human grader (reference standard). The tech-
nology we tested was Medios DR AI software (NM App 
V.2.0, Mediostech, Singapore) hereafter referred to as 
‘AI system’, incorporated into a Non-Mydriatic Fundus 
on Phone Camera, Model FOPNM-10, (Remidio Inno-
vative Solutions, Bangalore, India). This AI system is 
Conformitè Europëenne marked and was chosen as it 
was compatible with the camera routinely used in the 
mobile programme.

The reference standard was the image grading 
performed in the field by the senior Dominican 
screener–grader, holder of a Certificate of Higher 
Education in DR Screening, Gloucester Retinal Educa-
tion Group, University of Gloucestershire, UK (hereafter 
referred to as field grader).28 The grading by the field 
grader was compared with remote grading by senior 
graders in the English National Screening Programme, 
and the interobserver reliability kappa coefficient was 
calculated.29

Participants and setting
A consecutive sample of patients with diabetes over the 
age of 18 years attending the mobile DR screening clinic 
in Dominica from 5 June to 3 July 2021 was enrolled 
in the study. Screening was conducted in primary care 
health facilities in four health districts. Informed consent 
was obtained from all participants. There was no change 
to normal practice in the screening programme clinical 
pathway.30

Image acquisition and grading
Following the local protocol, the pupils of patients were 
dilated (tropicamide 0.5% and phenylephrine HCL 5%). 
A minimum of one image centred on the optic disc and 
one image centred on the macula were taken of each 
eye using the hand-held camera by the field grader. The 
field grader performed DR grading and decided to refer 
or not based on the grading. Patients received the usual 
standard of care, which includes counselling on diabetes 
control and referral to the eye clinic.

Although the AI system can work offline and there-
fore potentially provide a point of care decision, in this 
validation, study AI grading was deferred to the end of 
the study to ensure that any AI output did not influence 
grading and clinical decisions about referral.27

Analysis
RDR was defined as moderate non-proliferative diabetic 
retinopathy or worse, or diabetic macular oedema, or 
ungradable image in either eye. Sensitivity, specificity 
with 95% CIs and area under the curve (AUC) were calcu-
lated for RDR comparing the AI system to field grader as 
gold standard. Vision-threatening diabetic retinopathy 
(VTDR) was defined as the presence of proliferative 
diabetic retinopathy and/or diabetic macular oedema in 
either eye. Data were collected using electronic tablets 
and later converted into Excel and analysed using Excel 
and Stata X software.

AI and human grading
The AI system is based on convolutional neural networks 
and its functionality has been described in detail else-
where.27 The AI provides a binary output of ‘signs of DR 
detected’ or ‘signs of DR not detected’ with a threshold 
of ‘moderate non-proliferate DR’ and above, according 
to the International Classification of Diabetic Retinop-
athy (ICDR).31

The field grader has been trained on, and uses, the 
English Grading System for DR.6 This system does not 
correspond directly with the ICDR. The lower grade of 
DR, referred to as R1 in the English system is equivalent 
to both ‘mild and moderate non-proliferative DR’ in 
the ICDR. To allow comparability in the study, we asked 
the field grader to record retinal DR features in all mild 
and moderate cases and subsequently classified images 
accordingly.

Ungradable images
We defined ungradable images as those reported as such 
by the field grader. The AI system does not report an 
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ungradable category, rather it performs a quality assess-
ment for each image and notifies the user if the image is 
low quality and prompts a recapture of the image.27 This 
gives the technician the chance to retake the image until 
the AI quality threshold is achieved. This functionality 
was not used in the study, as we did not use the AI in the 
field to avoid introducing bias with the field grader. As 
the AI system actually produces a grade output for every 
image, regardless of the quality, we obtained AI grades 
for all images in this study, but in the analysis excluded 
AI reports for patients which the field grader reported as 
both eyes being ungradable.

Sample size
Based on previous validation studies, we assumed that 
the AI system would have an estimated sensitivity of 93% 
and a specificity of 89% for detecting moderate non-
proliferative DR or worse, the threshold used in our 
definition of referable DR.25–27 We also estimated that 3 
in every 10 patients screened in the programme require 
referral to the diabetic eye clinic based on previous Domi-
nica data; this is consistent with the expected prevalence 
of DR in people with diabetes.32 Our sample calcula-
tions, with a margin of error of 5%, gave for sensitivity 
sN=333 and for specificity spN=461. We took the largest 
estimate and added 46 participants to account for an esti-
mated 10% ungradable cases leading to a total minimum 
sample of n=507.33

RESULTS
Our study included 587 participants, with a mean age 
of 64 years (range 26–94); 426 (72.6%) were women 
(table  1). The predominant ethnicity was black Carib-
bean (570, 97.1%). A total of 2327 images were obtained 
from these 587 participants. The field grader classified 
72 participants in the study as having ungradable images 
in at least one eye (72/587, 12.2%), of which 52 had 
ungradable images in both eyes (52/587, 8.8%). The 
interobserver agreement between the field and remote 
image graders for detecting any DR was K=0.69 (good 
agreement 0.61–0.80).

The prevalence of RDR (moderate non-proliferative 
diabetic retinopathy or worse or diabetic macular 
oedema), including all participants (n=587), was 45.4% 
(95% CI, 41.5% to 49.5%) by the field grader and 39.8% 
(95% CI, 35.9% to 43.8%) by the AI system. The preva-
lence of RDR in the sample, excluding the ungradable 
participants (n=535), was 40.1% (95% CI, 36.0% to 
44.3%) by the field grader and 37.7%% (95% CI, 33.6% 
to 41.9%) by the AI system.

For all participants, including ungradable images, the 
AI system had a sensitivity of 77.5% and specificity of 
91.5% compared with the field grader for detecting RDR. 
The AUC was 0.84 (table 2).

Excluding the 52 participants deemed ungradable by 
the field grader resulted in the AI system having a sensi-
tivity of 81.4% and a specificity of 91.5%, with an AUC of 
0.96, for detecting RDR (table 3).

The analysis comparing the remote graders with the 
AI, excluding 65 participants deemed ungradable by 
the remote graders resulted in a sensitivity, specificity of 
83.7% and 83.7% and AUC of 0.86 (table 4).

The prevalence of VTDR, (proliferative diabetic reti-
nopathy and/or diabetic macular oedema) by the field 
grader in the entire sample was 18.9% (95% CI 15.7% 
to 22.1%) and excluding ungradable participants (n=52) 
it was 20.7% (95% CI 17.3% to 24.2%). In the sample 
excluding ungradable participants, the AI system had a 
sensitivity of 89.2% (95% CI 82.8% to 95.2%) for detecting 
the presence of VTDR (which it classified as ‘signs of DR 
detected’). The specificity of detecting VTDR could not 
be calculated as the AI system only gives a binary output 
for DR. There were 12 participants identified as having 
VTDR by the field grader, but not identified by the AI 
system. None of the 12 had proliferative diabetic retinop-
athy, all were graded as having diabetic maculopathy by 
the field grader. On further scrutiny of these 12 images, 7 
had other macular pathology, which resulted in the field 
grader referring. If these were excluded from the anal-
ysis, the sensitivity of the AI increases to 95.2% (95% CI, 
90.7% to 99.3%).

DISCUSSION
A good screening test for diabetic retinopathy should 
ideally have a sensitivity higher than 80% and a specificity 
higher than 95%.6 34 Our study demonstrated a sensitivity 
and specificity for the AI system of 77.5% and 91.5% 

Table 1  Participant characteristics (n=587)

Age (years) Mean (SD) 64 (12.3)

Range 26–94

Gender Women 426 (72.6%)

Men 161 (27.4%)

Ethnicity Black Caribbean 570 (97.1%)

Carib 17 (2.9%)

Years lived with 
diabetes*

Mean (SD) 12 (8.8)

Range 0–49

Methods of diabetes 
control

Diet and exercise only 5 (0.9%)

Tablet medication 517 (88.1%)

Insulin 100 (17.0%)

Insulin and tablet 54 (9.2%)

Type of diabetes Type 1 6 (1.0%)

Type 2 581 (99.0%)

Field grader DR 
grading

RDR 267 (45.4%)

VTDR 111 (18.9%)

One eye ungradable 20 (3.4%)

Both eyes ungradable 52 (8.8%)

*n=549, some missing data for years lived with diabetes.
DR, diabetic retinopathy; RDR, referable diabetic retinopathy; 
VTDR, vision-threatening diabetic retinopathy.
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when ungradable participants were included, and 80.4% 
and 91.5% when participants deemed ungradable by the 
field grader were excluded.

The analysis excluding ungradable participants prob-
ably gives the more reliable indication of the actual 
performance of the AI algorithm compared with the field 
grader. The AI system when used in the field prompts 
for a repeat image if the quality is low. To avoid bias, we 
could not use this feature during the study and therefore 
we run the AI in all images irrespective of quality.

At programme level however, it is important to consider 
all ungradable images as by definition those patients will 
need to be examined by an ophthalmologist and may 
have corneal pathology or cataract which results in poor 
retinal images.

The prevalence of DR (moderate non-proliferative 
diabetic retinopathy or worse or diabetic macular 
oedema) among our study participants was 40.1% (field 
grader) and 37.7% (AI system). This is similar to the 
estimated prevalence of DR for North America and the 
Caribbean region of 38.1%.32 The regional estimates 
indicate 7.8% of people with diabetes have VTDR and 
are therefore at risk of vision loss if not treated. In our 
study participants, the prevalence of VTDR was 20.7%, 
significantly higher than the current regional estimates. 
The mean years living with diabetes in the study sample 
is quite high (12 years) and this may differ from the 
population-based studies included in regional estimates. 

Another explanation is that the higher prevalence found 
may indicate late diagnosis or poor diabetes control. Also, 
the prevalence of obesity and hypertension in Dominica 
is high, possibly compounding the higher progression to 
VTDR of our study population.23

This study was conducted in a real-world outreach 
mobile programme. The sensitivity values are below 
those previously reported in the literature for Medios 
AI (93%–100%).25–27 A recent review of AI software used 
for DR screening found sensitivities ranging from 86% 
to 100% for detecting ‘referable DR’, with most of these 
using the same definition for referable DR as our study.10 
It is important to point out that, although the study was 
not powered to detect VTDR, there were 12 cases where 
the grader classified patients as VTDR, due to suspected 
maculopathy, that were not identified by the AI system, 
giving a sensitivity for VTDR of 89%. This reflects the fact 
that field graders in real-world programmes make deci-
sions on referral of other pathology that they find while 
screening. In this case, seven participants had non-DR 
macular signs that prompted referral which the AI is not 
trained to pick up. An adequately powered large scale 
field validation of AI in Thailand achieved a sensitivity 
for identifying VTDR of 91.4% and reported that most of 
the discrepancies were related to the grading of diabetic 
maculopathy.22 When we remove the seven referrals with 
non-DR macular changes from the analysis, the sensitivity 
of the AI for VTDR increases to 95.2%.

Table 2  Grading comparison between AI system and field grader, including ungradable participants

Field grader

AI system Not referable Referable Total

Not referable 293 60 353

Referable 27 207 234

Total 320 267 587

Sensitivity (95% CI) Specificity 
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

AUC

Referable or not 77.5%
(72.0% to 82.3%)

91.5%
(87.9% to 94.3%)

88.4%
(84.1% to 91.7%)

83.0%
(82.0% to 87.9%)

0.84

AI, artificial intelligence; AUC, area under the curve; NPV, Negative Predictive Value; PPV, Positive Predictive Value.

Table 3  Grading comparison between AI system and field grader, excluding ungradable participants (n=52)

Field grader

AI system Not referable Referable Total

Not referable 293 40 333

Referable 27 175 202

Total 320 315 535

Sensitivity (95% CI) Specificity 
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

AUC

Referable or not 80.4%
(75.5% to 86.3%)

91.5%
(87.9% to 94.3%)

86.6%
(81.7% to 90.3%)

87.9%
(84.6% to 90.6%)

0.96

AI, artificial intelligence; AUC, area under the curve; NPV, Negative Predictive Value; PPV, Positive Predictive Value.
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The balance of sensitivity and specificity is very rele-
vant at programme level. A low specificity would imply 
too many patients being unnecessarily referred to the eye 
clinic, overloading the services. The specificity of the AI 
system in our study was quite high, which suggests the 
appropriateness of the referrals made. The programme 
guidelines in Dominica have a low threshold for referral, 
with mild forms of DR being referred to the eye clinic. 
This is because there is no robust system for annual recall 
of diabetic patients for an eye examination. Referring 
less severe cases of DR gives an opportunity for patient 
education about diabetes and hypertension control and 
ensures the patients are registered a in the eye clinic 
which facilitates regular review. The threshold for referral 
varies from country to country and is determined by local 
guidelines for DR management.35–38 With the current 
programme referral thresholds, the AI system resulted 
in a postive predictive value (PPV) of 88.4% and 85.4% 
(including and excluding ungradable images in the anal-
ysis).

Our study had a women-to-men ratio of 3.5:1. Although 
it is reported that women are more likely to have diabetes 
than men in Caribbean populations, the WHO STEPwise 
approach to surveillance survey (STEPS) data for Domi-
nica in 2008 showed a higher prevalence of diabetes in 
men.23 39 It is plausible that this has changed in the last 
decade in Dominica. An alternative explanation is that 
women may be accessing diabetes services more than men 
and are therefore overrepresented in the DR screening 
programme. If this is the case, it will be important to 
explore the reasons for the lower uptake of screening by 
men and implement strategies to improve it.

This study reports the performance of an AI system fully 
integrated in a functioning DR screening programme in an 
LMIC. It provides evidence that an AI system with off-line 
capabilities has the potential to be deployed in a mobile 
community DR screening programme and perform with 
reasonable accuracy compared with a trained specialist 
grader. In order to leverage the contribution of AI tech-
nology to improve DR screening coverage and address 
the specialised human resource constraints, it is recom-
mended as a next step to research the performance of 

the smartphone camera and AI system in the hands of 
trained community nurses.
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Purpose: To evaluate the performance of a validated Artificial Intelligence (AI) algorithm developed for a smartphone-based camera 
on images captured using a standard desktop fundus camera to screen for diabetic retinopathy (DR).
Participants: Subjects with established diabetes mellitus.
Methods: Images captured on a desktop fundus camera (Topcon TRC-50DX, Japan) for a previous study with 135 consecutive 
patients (233 eyes) with established diabetes mellitus, with or without DR were analysed by the AI algorithm. The performance of the 
AI algorithm to detect any DR, referable DR (RDR Ie, worse than mild non proliferative diabetic retinopathy (NPDR) and/or diabetic 
macular edema (DME)) and sight-threatening DR (STDR Ie, severe NPDR or worse and/or DME) were assessed based on 
comparisons against both image-based consensus grades by two fellowship trained vitreo-retina specialists and clinical examination.
Results: The sensitivity was 98.3% (95% CI 96%, 100%) and the specificity 83.7% (95% CI 73%, 94%) for RDR against image 
grading. The specificity for RDR decreased to 65.2% (95% CI 53.7%, 76.6%) and the sensitivity marginally increased to 100% (95% 
CI 100%, 100%) when compared against clinical examination. The sensitivity for detection of any DR when compared against image- 
based consensus grading and clinical exam were both 97.6% (95% CI 95%, 100%). The specificity for any DR detection was 90.9% 
(95% CI 82.3%, 99.4%) as compared against image grading and 88.9% (95% CI 79.7%, 98.1%) on clinical exam. The sensitivity for 
STDR was 99.0% (95% CI 96%, 100%) against image grading and 100% (95% CI 100%, 100%) as compared against clinical exam.
Conclusion: The AI algorithm could screen for RDR and any DR with robust performance on images captured on a desktop fundus 
camera when compared to image grading, despite being previously optimized for a smartphone-based camera.
Keywords: smartphone, Deep Learning, retina, imaging, screening

Introduction
Diabetes Mellitus (DM) is estimated to affect over 640 million people by 2040. The global prevalence of any form of DR 
among diabetics has increased to 34.6%, and 10.2% for sight-threatening DR (STDR), over the past decade.1,2

Artificial Intelligence (AI) methods based on Deep Learning (DL) have been at the forefront of DR screening 
programs. They particularly help in detecting DR in its early stages. AI-based DR screening algorithms have often been 
validated against consensus image grading from two or three field, two-dimensional fundus images with promising 
results.3–7 However, stereoscopic clinical examination can provide significantly more macular details and inputs from the 
retinal periphery. This is especially important in diabetic macular edema (DME) and proliferative diabetic retinopathy 
(PDR) where neovascular changes can be missed at times by conventional fundus imaging techniques capturing posterior 
pole images. Evidence of AI performance to detect DR changes compared to clinical diagnosis is lacking in literature.4

It is established that the performance of the algorithm is closely tied to the fundus camera on which it has been trained 
and eventually deployed. Hence, the validation process entails ensuring optimum performance on the intended camera for 
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use by regulatory authorities.8,9 This, however, limits their utility across devices. There is limited literature on the 
performance of a DR algorithm on images obtained from different camera systems.

The Medios AI (Medios Technologies, Remidio Innovative Solutions, Singapore) has been extensively validated 
when integrated on the Remidio smartphone-based fundus camera (Fundus on phone, FOP).4,10,11 Though developed and 
trained on various desktop camera-based images, some architectural changes were made while optimizing the Medios AI 
for the Remidio FOP such that automated DR grading could be delivered offline on the smartphone itself, for eg, at 
a remote rural site with no internet.4,10,11 The AI’s ability to detect DR on desktop-camera-derived images after these 
optimizations has not been studied till date.

In this post-hoc analysis, we evaluated the performance of this AI algorithm on images obtained from a desktop 
fundus camera. This could add a unique capability of performing optimally on both low-cost and high-end cameras. 
Thus, it could potentially move the AI towards being device independent, expanding the use of the AI across different 
settings. Additionally, to the best of our knowledge, this is also the first study to compare the performance of an AI 
algorithm to both clinical examination and consensus image grading by retina specialists.

This AI algorithm gives a binary indication of referral for DR without staging disease. It has been trained to maximize 
the sensitivity for detecting referable DR (RDR) Ie, worse than mild non proliferative diabetic retinopathy (NPDR), 
excluding mild NPDR cases during the training process. While the algorithm was first intended for deployment on the 
Remidio FOP, images from a wide range of cameras were used during the training process. DR algorithms are often 
validated with datasets captured under similar conditions used for training. This can yield to higher accuracies than 
expected in real-world settings. The purpose of this study was to validate the performance of this AI as an independent 
external study on a different imaging system. Beyond performance, this study will also give insights on how the 
algorithm behaves for mild cases of DR when captured by a standard tabletop fundus camera.

Methods
This retrospective study was approved by the Institutional Ethics Committee at Aravind Eye Hospital and Postgraduate Institute 
of Ophthalmology, Pondicherry, a tertiary eye care center in south India. The study was performed according to the International 
Conference on Harmonisation Good Clinical Practice guidelines and fulfilled the tenets of the Declaration of Helsinki.

Study Population and Sample Size Calculation
Posthoc analysis was conducted on a dataset collected for an earlier study validating the smartphone-based camera (FOP, 
Remidio Innovative Solutions Pvt. Ltd., Bangalore, India) against a standard tabletop fundus camera (TRC-50DX, 
Topcon Corporation/Kabushiki-gaisha Topukon, Tokyo, Japan).12

The study methodology has been described in detail in an earlier publication.12 In brief, two hundred consecutive 
diabetic subjects above 21 years of age meeting study criteria were enrolled in the study between April 2015 and 
January 2016 following a written informed consent. These included diabetic subjects with and without clinically gradable 
DR. Patients with significant corneal or lenticular pathology precluding fundus examination or those who had undergone 
prior laser treatment or vitreo-retinal surgeries were excluded from the study.

A sample size of 200 eyes was chosen in the earlier study to include adequate samples of each category of DR, namely no 
DR, mild to moderate NPDR, severe NPDR, and PDR. This sample estimate was found to be adequate for the present study 
too. The minimum required sample is 172 eyes to detect a sensitivity of 90% (and addressing a specificity of 80%) with 
a precision of 10%, incorporating 20% prevalence of referable diabetic retinopathy (RDR) and with a 95% confidence level.

Dilated Image Acquisition Protocol
An ophthalmic photographer used a standard Topcon tabletop fundus camera to capture mydriatic 45 degrees, three fields 
of view per eye – namely the posterior pole, nasal, and supero-temporal field images. All photographs were stored as 
JPEG files after removing all patient identifiers and assigning a randomly generated unique numerical identifier linked to 
the participant’s study ID number.
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Reference Standard for Comparison of the Performance of the AI
The reference standard for performance assessment of Medios AI consisted of – 1) The consensus image grading of two 
fellowship trained vitreo-retinal experts (MDS, PB) masked to the clinical grades, as well as each other’s grades for all 
images, and 2) A clinical examination conducted by a single retina specialist (SS) for diagnosing the severity of DR 
using slit lamp biomicroscopy (+90D lens) and indirect ophthalmoscopy (+20D lens).

Two experts graded the level of DR based on the International Clinical Diabetic Retinopathy (ICDR) severity scale 
for each eye after examining images from the 3 fields of view.13 The scale consists of No DR, Mild NPDR, Moderate 
NPDR, Severe NPDR, PDR and DME. Referable DR (RDR) was defined as moderate NPDR or worse disease and/or the 
presence of DME. Sight-threatening DR (STDR) was defined as severe NPDR or worse disease and/or the presence of 
DME. DME was defined as presence of surrogate markers of macular edema such as presence of hard exudates within 1 
disc diameter of the center of the fovea. Additionally, all the misclassified false-positive images detected as RDR by the 
AI were provided to the two expert graders for an adjudicated grading. They also graded the quality of images as 
“excellent”, “acceptable” and “ungradable” as described elsewhere.12

The image diagnosis of each doctor was then converted to the following categories as shown in Table 1. The clinical 
diagnosis of DR was based on the ICDR severity scale as well.

AI-Based Software Architecture
The Medios AI consists of an ensemble of two convolutional neural networks (based on the Inception-V3 architecture). 
They classify colour fundus images for the presence RDR. The detailed software architecture has been published 
previously.4,10 The training set consisted of 52,894 images of which 34,278 images originated from the Eye Picture 
Archive Communication System tele-medicine program (EyePACS LLC, Santa Cruz, California).14 This dataset con
tained images from multiple ethnicities and desktop-based cameras. Additionally, 14,266 mydriatic images were taken 
with a Kowa VX-10α (Kowa American Corporation, CA, USA) at a Tertiary Diabetes Center, India and 4350 non- 
mydriatic images were taken in screening camps in India using the Remidio FOP NM10. The dataset was curated to 
contain as many referral cases as healthy ones.

The AI algorithm was initially intended for deployment on the Remidio FOP. Therefore, the final models were 
selected based on their performance on an internal test dataset consisting of only Remidio FOP images. The AI has been 
optimized for the sensitivity of RDR and specificity of any DR to minimize under-detection of referable cases. In other 
words, it reduces false negatives from a screening perspective. While this leads to a small proportion of mild NPDR 
being flagged as RDR, it makes the chances of missing an RDR lower.

Automated Image Analysis
Image captured on the Topcon TRC-50DX (Topcon, Japan) were de-identified and uploaded on a secure Virtual Machine 
to be analyzed by Medios AI software. Each patient received an automated image quality analysis followed by an 
automated DR analysis. The AI DR analysis output, ie, No RDR, or RDR, as well as the image quality analysis results 
were noted. The DR results of patients with images deemed ungradable by the AI were included in the analysis if they 
received a consensus grading by the experts. The quality check AI presents results as ungradable vs gradable. The last 

Table 1 Image Diagnosis of Each Doctor and the Corresponding Severity

Severity Image Diagnosis

Ungradable DR and/or DME images ungradable

Healthy No DR and no DME

Sight threatening diabetic retinopathy (STDR) Severe NPDR and Proliferative DR and/ OR DME

Referable diabetic retinopathy (RDR) Moderate NPDR and more severe and/ OR DME

Any diabetic retinopathy (any DR) Any grade of DR and/or DME

Abbreviations: DR, Diabetic Retinopathy; DME, Diabetic Macular Edema, NPDR, Non-Proliferative Diabetic Retinopathy.
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step of the AI algorithm consists of thresholding a probability value where 0 is ungradable and 1 is gradable. A threshold 
of 0.2 is used when deploying the model on the Remidio FOP.

Outcome Measures
The primary outcome measures were the sensitivity, specificity and predictive values (performance metrics) of the AI in 
detecting RDR when compared to the image grading provided by the specialists.

The secondary measures included assessment of the sensitivity, specificity, predictive values of the AI for any DR, 
sensitivity in detecting STDR against image grading as well as intergrader reliability for diagnosis. Additionally, the 
same performance metrics of the AI in detecting any DR, RDR and STDR compared to the diagnosis based on clinical 
examination were measured.

Statistical Analysis
A 2*2 confusion matrix was used to compute the sensitivity, specificity and Kappa to detect any stage of DR, RDR and 
STDR by the AI. Additional metrics included the positive predictive value (PPV) and the negative predictive value 
(NPV). Wilson’s 95% confidence Intervals (CI) were calculated for sensitivity, specificity, NPV, and PPV. A weighted 
kappa statistic was used to determine the interobserver agreement (including the AI as a grader) to the consensus image 
grading. Kappa of 0–0.20 was considered as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, 
and 0.81–1 as almost perfect agreement.15 All data were stored in Microsoft Excel and were analyzed using pandas 
(1.1.0), numpy (1.19.5) and scikit-learn (0.23.1) libraries in python 3.7.7.

Results
The study involved analysis of images of 233 eyes from a study cohort of 135 participants aged above 21 years. Subjects 
had a mean age of 54.1±8.3 years and 65% were men. The average duration of diabetes was 10.7 years (median, 10 
years; interquartile range, 8–15 years). As per the clinical examination, 55 eyes (23%) had no DR, 70 eyes (30%) had 
mild to moderate NPDR, 46 eyes (20%) had severe NPDR, and 62 eyes (27%) had PDR. Forty-four eyes (19%) had 
DME. The image diagnosis of each doctor was first classified as any DR, RDR, STDR, healthy and ungradable 
categories. Consensus amongst doctors was then computed. A total of 170 eyes were included in the final analysis. 
Refer to Figure 1 for illustration.

Comparing the AI Results Against Image Grading
Comparing AI results against image grades (consensus grading followed by adjudicated grading of misclassified false 
positive images by the AI) by two independent vitreo-retina specialists on images deemed gradable, there was a high 
sensitivity and specificity for RDR as well as any DR, and the sensitivity for STDR was nearly 100% (Tables 2 and 3).

There were 8 false-positive cases (4.7%) when comparing AI to image grading for RDR of which 4 were mild 
NPDR and 4 were no DR. There were 2 referable cases missed by the AI, 1 of them was RDR, and 1 was STDR. 
Kappa agreement between AI and image grading for RDR was 0.85. Figure 2 shows examples of a true positive, a true 
negative, a false-positive and a false-negative subject. Figure 3 shows the retinal photographs taken from both the 
cameras highlighting how factors such as field of view and image quality compare between both systems.

Comparing the AI Results Against Clinical Assessment
Comparing AI results against clinical examination, there was 100% sensitivity to detect RDR and STDR with a high 
sensitivity to detect any DR as well. The specificity for RDR was moderate and any DR was high (Tables 4 and 5). There 
were 23 (13.5%) false-positive cases when comparing AI to clinical assessment for RDR, 18 being mild DR and 5 cases 
of no DR. There were no missed cases of RDR or STDR. Kappa agreement between AI and clinical grading for RDR 
was 0.70.
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Intergrader Reliability
The intergrader reliability (weighted kappa, ⱪ) for detecting RDR was assessed against the consensus (including AI as a grader). 
Kappa of the AI was 0.81, and that of the clinical ground truth was 0.72 and that of the two graders were 0.89 and 0.86.

Figure 1 STARD flowchart: AI output for RDR against clinical assessment and image-based grading.

Table 2 Confusion Matrix: AI vs Consensus Image Grading

N= 170 Consensus Image Grading (N, %)

AI No DR Any DR RDR STDR

No RDR 40 (23.5%) 1 (0.58%) 1 (0.58%) 1 (0.58%)

RDR 4 (2.35%) 4 (2.35%) 24 (14.11%) 95 (55.88)

Abbreviations: AI, Artificial Intelligence; DR, Diabetic Retinopathy; RDR, Referable Diabetic Retinopathy; STDR, Sight- 
threatening Diabetic Retinopathy; N, number of eyes.

Table 3 Performance of AI Against Image Grading

RDR Any DR STDR

Sensitivity (95% CI) 98.3% (96.1%, 100%) 97.6% (95%, 100%) 99.0% (96.9%, 100%)

Specificity (95% CI) 83.7% (73.3%, 94%) 90.9% (82.4%, 99.4%) NA

PPV (95% CI) 93.7% (89.5%, 97.9%) 96.9% (93.8%, 99.9%) NA

NPV (95% CI) 95.3% (89.1%, 100%) 93% (85.4%, 100%) NA

Abbreviations: AI, Artificial Intelligence; DR, Diabetic Retinopathy; RDR, Referable Diabetic Retinopathy; STDR, Sight-threatening 
Diabetic Retinopathy; PPV, Positive Predictive Value, NPV, Negative Predictive Value.
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Accuracy of the Image Quality by the AI
At a threshold of 0.2 image quality (original version of the image quality model deployed on Remidio FOP), the 
sensitivity for detecting ungradable images was 100% with a sensitivity of 82.8% for gradable images. At 
a threshold of 0.5, the sensitivity for detecting ungradable images dropped to 96.15% with a sensitivity of 89.0% 
for gradable images.

Figure 2 Images of true positive (A), false positive (B), false negative (C) and true negative (D) subject with activation maps for image triggering positive diagnosis.

Remidio NM FOP-10 Topcon TRC-50DX

Figure 3 Retinal image photographs from Remidio FOP and Topcon camera.
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Discussion
In this study, we found that the AI performance to detect RDR and any stage of DR on images captured with 
a conventional desktop fundus camera (Topcon) was high when compared to image grading of vitreo-retina specialists.

The Medios AI-DR algorithm was trained on a diverse dataset, despite being architecturally modified to function 
optimally on the smartphone-based Remidio FOP. During development, images of varying image quality from high-end 
tabletop systems on top of the original target device were utilized. We hypothesize this to have contributed to the encouraging 
results obtained in this study, which was not established in any previous study thus far. This is a step towards a device- 
agnostic algorithm, a much-needed approach in locations where validated fundus cameras are already part of the DR 
screening programmes. This also establishes that diversity in dataset is key to developing an AI algorithm that is more 
generalizable across different camera systems. The dataset encompassed a variety of cameras and capturing conditions, while 
restricting images to a certain field of view (30 to 45 degrees). We hypothesise that the neural network is able to generalize to 
the differences of colour tint and spatial resolution resulting from using different cameras. This would have, however, not 
happened if the field of view changed in more drastic ways. This scenario would likely require adaptations to the image pre- 
processing steps, the neural network architecture and the training dataset. In this study, the field of view (45 degrees) was 
within the fields of view presented during training, and thus DR lesions have similar relative sizes across different images. 
Additionally, the smartphone-based fundus camera has been validated against standard desktop systems for image 
quality.12,16 This has specifically shown that DR grading by experts is comparable on the systems.

Moderate NPDR is the cut off for detecting RDR as per the International Council of Ophthalmology guidelines for 
screening of DR and the AAO preferred practice patterns.2,17 Accordingly, this was also the threshold used for the AI to 
trigger referral. When the AI results were compared to the clinical grades for RDR, the sensitivity was 100% and 
specificity was 65.2%, respectively. The specificity was lower than that reported in previous validation studies (86.73– 
92.5%) on the smartphone-based system.4,10,11 On further analyzing the low specificity, we found that there were 
eighteen cases of mild NPDR and five cases of no DR on clinical assessment that were detected by the AI algorithm 
as RDR. Interestingly, when the consensus image grading of the same mild NPDR patients were cross verified, fifteen 
were graded as RDR, with two of them graded as STDR.

On analyzing the five no DR cases on clinical exam that were picked as RDR positive by the AI, two had a consensus 
of any DR, with one of them being RDR too on image grading. We re-examined the class activation maps on these five 

Table 5 Performance of AI Against Clinical Exam

RDR Any DR STDR

Sensitivity (95% CI) 100.0% (100%, 100%) 97.6% (94.9%, 100%) 100% (100%, 100%)

Specificity (95% CI) 65.2% (53.7%, 76.6%) 88.9% (79.7%, 98.1%) NA

PPV (95% CI) 81.9% (75.2%, 88.6%) 96.1% (92.7%, 99.4%) NA

NPV (95% CI) 100.0% (100%, 100%) 93.0% (85.4%, 100%) NA

Abbreviations: AI, Artificial Intelligence; DR, Diabetic Retinopathy; RDR, Referable Diabetic Retinopathy; STDR, Sight-threatening 
Diabetic Retinopathy; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

Table 4 Confusion Matrix- AI Vs Clinical Exam

N=170 Clinical Grading (N, %)

AI No DR Any DR RDR STDR

No RDR 40 (23.5%) 3 (1.76%) 0 (0%) 0 (0%)

RDR 5 (2.94%) 18 (10.58%) 19 (11.17%) 85 (50%)

Abbreviations: AI, Artificial Intelligence; DR, Diabetic Retinopathy; RDR, Referable Diabetic Retinopathy; STDR, Sight- 
threatening Diabetic Retinopathy; N, number of eyes.
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subjects and found that three subjects had other lesions – drusens (in two) and Pigment Epithelial Detachment (in one) 
that triggered the AI to give a positive result.

The analysis of the spuriously low specificity of the RDR algorithm against clinical exam also showed that the kappa 
for clinical exam (Cohen’s kappa 0.72) was lower, compared to the agreement obtained by experts during image grading 
(Cohen’s kappa 0.89 and 0.86). The variation found was higher in milder stages of disease. Literature indicates a wide 
range of interobserver and grader reliability, ranging from 0.22 to 0.91.18 We found that the consensus image diagnosis 
from two experts was more consistent and reliable than a single observer clinical evaluation. This further justifies Krause 
et al’s interpretation where they found that majority decision to have a higher sensitivity than any single grader.18 Most of 
the images (15/18 eyes) that were graded as mild NPDR on clinical exam were graded as moderate NPDR or more severe 
disease on image grading. Thus, specificity went up considerably to 83.7% on image grading with multiple graders. Well 
known clinical trials like the ACCORD and FIND have also found image grading to be superior to clinical grading to 
detect early to moderate changes in DR over time.19 This is also backed by regulatory authorities like FDA who advocate 
for image grading by multiple certified graders on a consensus or adjudication basis. While clinical assessment provides 
an opportunity to examine the entire retina, three field imaging with multiple graders provided sufficient information for 
reliable screening to detect RDR.10,11

While we found the results to be comparable to our previous studies using the smartphone-based camera, the modest 
increase in sensitivity4 and decrease in specificity4,10,11 is possibly due to minor variations expected in image sharpness. 
The decrease in specificity is primarily due to an overcall of mild NPDR cases. A desktop camera like Topcon has better 
sharpness with mild lesions being more prominent and hence more likely to be picked up by the AI.

The Medios AI system consists of two components: an AI for image quality analysis and an AI for referable DR. This 
allows the operators to get live automated feedback at the time of image capture. It enables the user to understand 
whether the image captured is of sufficient quality or needs a recapture. This image quality algorithm has been optimized 
for use on the Remidio FOP-NM10 device. In this study, we assessed the performance of the AI quality check on the 
images captured with Topcon camera using the same 0.2 threshold that was used on the original version of the system 
(deployed on Remidio FOP). The sensitivity of detecting ungradable images was 100% and the sensitivity to detect 
gradable images was 82.8%. We found that an improved performance can be achieved on the Topcon system by setting 
the threshold at 0.5. The sensitivity for detecting gradable images improved to 89.0% with a sensitivity drop to 96.15% 
for detecting ungradable images. Given the minor differences in the sharpness of their imaging system, the threshold of 
the algorithm will require to be varied prior to deployment on a new camera system.

The strengths of this study are post-hoc analysis on a dataset with good representation of all stages of disease, 
simultaneous comparison of the AI performance to two reference standards (image grading and clinical assessment) as 
well as an assessment of the image quality algorithm.

This study has some limitations. First, the AI has been tested with images with similar fields of view. The 
performance of the AI models when deployed on images with a significantly different field of view needs to be assessed. 
Second, the images were analyzed using the same AI model as deployed offline on the Remidio FOP, but on a Cloud 
Virtual Machine. The performance of the system after a future offline integration of the models on a Topcon Fundus 
camera system will require further study.

Conclusion
To the best of our knowledge, this study is the first of its kind to compare an AI-based screening algorithm for DR to both 
clinical examination and consensus image-based grading. This study adds to the growing evidence on image-based 
grading being more consistent and reliable for screening DR than a clinical exam. The AI which had previously been 
validated only on a smartphone-based fundus camera showed a high sensitivity and specificity in screening for RDR and 
any stage of DR on images captured on a standard desktop camera. This indicates that this algorithm can be used on both 
a high-end desktop fundus camera like Topcon and a smartphone-based system to screen for DR given the diversity in 
training dataset. Thus, it is a positive move towards a device-agnostic application of the AI for expanding the use in 
screening for DR in different settings. Further studies need to be conducted to assess the efficiency of the system on 
images from other cameras. This may provide a big boost in reducing the huge economic burden posed by DR globally.
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Abstract  
Introduction: Numerous studies have demonstrated the use of Artificial Intelligence for early detection of referable 
diabetic retinopathy (RDR). A direct comparison of these multiple Automated DR Image Assessment Softwares(ARIA) 
is however challenging. We retrospectively compared the performance of two modern ARIAs, IDx-DR and Medios AI. 
Methods: In this retrospective-comparative study, retinal images with sufficient image quality were run on both 
ARIAs. They were captured in 811 consecutive patients with Diabetes visiting diabetic clinics in Poland. For each 
patient, four non-mydriatic images, 45-degree field of view i.e two sets of one optic disc and one macula-centered 
image using Topcon NW400 were captured. Images were manually graded for severity of DR as no DR, any DR (mild 
NPDR or more severe disease), RDR (moderate NPDR or more severe disease and/or clinically significant diabetic 
macular edema (CSDME)) or sight-threatening DR (severe NPDR or more severe disease and/or CSDME) by certified 
graders. The ARIAs output was compared to manual consensus image grading (reference standard).  
Results: On 807 patients, based on consensus grading, there was no evidence of DR in 543 patients (67). Any DR was 
seen in 264 (33%) patients, of which 174 (22%) were referable DR, and 41 (5%) sight-threatening DR. The sensitivity 
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of detecting RDR against reference standard grading was 95% (95%CI 91, 98%) and the specificity was 80% (95%CI 77, 
83%) for Medios AI. They were 99% (95%CI 96, 100%) and 68% (95%CI 64, 72%) for IDx-DR respectively.  
Conclusion: Both the ARIAs achieved satisfactory accuracy, with few false negatives. Although false-positive results 
generate additional costs and workload, missed cases raise the most concern whenever automated screening is 
debated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
Diabetes is a global epidemic and one of the world’s fastest-growing diseases. The number of patients with diabetic 
retinopathy (DR) and sight-threatening DR is also expected to rise. There are only a few established nationwide DR 
screening programmes and overall DR screening services remain inadequate in most of the developing world and 
even some developed countries [1]. This is further compounded by the increasing resources needed for the 
implementation and maintenance of comprehensive DR screening programs [2]. 
One of the proposed solutions to this global issue is the use of automated diabetic retinopathy image assessment 
software (ARIA) to grade fundus images instead or alongside human graders. There are multiple ARIAs currently 
available with many more being developed worldwide [1].  Although there is an abundance of studies looking into the 
performance of a single ARIA, studies comparing multiple ARIAs are currently rare, as direct comparison is often 
difficult [3]. Based on previous studies it is clear that the performance of even state-of-the-art algorithms may vary 
considerably [3,4]. We set out to analyze the performance of two modern ARIAs, IDx-DR and MediosAI. 
Materials and Methods 
Study Design: In this retrospective comparative study, the performance of two different ARIAs in screening for DR 
were compared to human graders (reference standard). The screening for DR was conducted and retinal images were 
obtained from diabetic clinics in Poznan, Poland between March 2020 and April 2021. The Institutional Review Board 
(Ophthalmology 21, Foundation for the Advancement of Ophthalmology) waived the need for IRB approval and 
written informed consent from participants for this retrospective study. The study was in adherence to the tenets of 
the Declaration of Helsinki. All the extracted images were anonymized, and no change in the clinical pathway was 
anticipated.  
The primary outcome of the study was to assess the sensitivity and specificity of ARIAS in detecting referable Diabetic 
Retinopathy (RDR). The secondary outcomes were to assess the positive & negative predictive values of ARIAS to 
detect RDR and to assess the sensitivity of ARIAS in detecting sight-threatening diabetic retinopathy.  
Sample size: Using an alpha error of 0.05, a precision rate of 10% (two sided), an estimated sensitivity of 85%, and an 
estimated incidence of RDR (International Clinical Diabetic Retinopathy (ICDR) -Moderate Non-proliferative DR 
(NPDR) and/or presence of clinically significant diabetic macular edema (CSDME)) to be 7%, the sample size 
calculated was 700 participants. Given these assumptions and expecting that 10% of subjects may be qualified as 
insufficient quality, a sample size of 800 subjects was chosen. 
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Inclusion & Exclusion criteria: The retinal images of subjects with established diabetes mellitus that were captured at 
the time of DR screening were included. Those that did not have at least one disc and one macula-centred image of 
sufficient quality were excluded from the study.  Additionally, subjects who received treatment for DR (lasers or 
intraocular injections) were excluded.  
Retinal Image Acquisition: The screening process involved undilated fundus images captured using a Topcon camera 
Nw-400 by trained operators who followed a specific imaging protocol. For each patient, a total of four images (45 
degrees field of view each) were captured. They included one image centred on the optic disc and one centred on the 
macula for each eye. Additional images were taken to ensure sufficient quality. Retinal images were obtained from 
811 consecutive patients with established diabetes mellitus who underwent screening for DR. Images deemed of 
sufficient quality graded by the IDx-DR AI software were selected. A total of 3200 sufficient quality images from 811 
patients were used for the study.  
Reference standard grading: The patients with images of sufficient quality were split into two sub-datasets. 362 
patients were graded by three Polish retina specialists and 491 by three certified graders in India. All the graders are 
masked to the output of the AI and to each other's grading. Images were graded for severity of diabetic retinopathy 
based on International Clinical Diabetic Retinopathy (ICDR) severity classification as no DR, mild NPDR, moderate 
NPDR, severe NPDR and Proliferative Diabetic retinopathy (PDR). Macular edema was determined by the presence of 
surrogate markers like hard exudates. If hard exudates were found within 1 DD of the fovea, macular edema was 
determined as significant and labelled as clinically significant diabetic macular edema (CSDME) present. Image 
grading was done on a per eye basis. The final diagnosis for each patient was determined by the stage of DR of the 
more affected eye. Consensus image grading was regarded as the final reference standard based on Polish and Indian 
graders for the comparison of both AI systems. All the analysis was performed at the patient level.  
Definitions: Referable diabetic retinopathy was defined as moderate NPDR and more severe disease (moderate 
NPDR, severe NPDR, PDR) and/or the presence of CSDME. Sight-threatening diabetic retinopathy (STDR) was defined 
as severe NPDR and more severe disease (severe NPDR, PDR), and/or the presence of CSDME 
Artificial Intelligence (AI) Analysis using automated grading systems: We used two different Automated Diabetic 
Retinopathy Image Assessment Softwares (ARIAs) i.e., Medios AI for DR (Medios Technologies, Remidio Innovative 
Solutions, Singapore) and IDx-DR (Digital Diagnostics, Iowa, USA). The retinal images were run on both the ARIAs to 
screen for DR. Both the systems processed images deemed as sufficient quality by the IDx-DR system. IDx-DR results 
were recorded during live screening and all images captured for the patient were analyzed on a per patient basis. 
Two images per eye that passed the AI quality check were submitted to the AI for DR analysis. For Medios AI analysis, 
anonymized images for each patient were securely transferred to a cloud platform and the images were analyzed on 
an automated script version of the AI on a server instead of a manual analysis through the standard iPhone app 
deployment.  
Both the AI systems are based on Convolutional Neural Networks (CNN), with the Medios system being based on the 
Inception-V3 architecture. Detailed description of the model is provided in the literature [5]. In brief, the Medios AI 
algorithm evaluated two possible outputs: “no signs of DR detected” (non-referable DR), “signs of DR detected” 
(referable DR). Report was generated on a per patient basis. The IDx-DR system also has an image quality and a 
diagnostic algorithm.  The IDx-DR system outputs the stage of DR and generates a per patient report.  
Statistical analysis: 
All data was stored in Microsoft Excel sheets and Apache Parquet files and was analyzed using R and Python 
programming languages along with Numpy, Pandas, Scikit learn and Scipy libraries. The diagnosis of the AI using 
Medios and IDx-DR AI systems were tabulated against the consensus image diagnosis (reference standard) by 
constructing 2×2 tables. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) 
with 95% CIs were calculated. Inter-rater agreement for Polish and Indian graders was measured by calculating the 
kappa statistic. 
Results 
The study included the images of 811 patients. Image quality analysis was evaluated as part of the clinical workflow 
using the IDx-DR AI system. Four patients deemed ungradable by the graders were excluded. In total, 807 patients 
were included for further analysis. An additional two patients were removed from STDR analysis as they did not have 
a consensus for a STDR diagnosis despite being labelled as RDR by consensus. Figure 1 presents the STARD diagram of 
retinal image selection in the study.  
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Grades from the Polish and Indian graders were converted to No DR, any DR, RDR and STDR before computing 
consensus. Based on consensus grading, there was no evidence of DR in 543 patients (67%). Any DR was seen in 264 
(33%), of which 174 (22%) were referable DR, and 41 (5%) sight-threatening DR. The inter-rater agreement (Cohen's 
kappa) for Poland graders was 0.679 (Ophthalmologist 1), 0.904 (Ophthalmologist 2) and 0.848 (Ophthalmologist 3). 
For the Indian graders, kappa was 0.632 (Ophthalmologist 1), 0.916 (Ophthalmologist 2) and 0.87 (Ophthalmologist 
3).  
IDx-DR AI system gives an output at a stage level. 567 patients (567/807; 70.3%) were flagged positive for DR (mild, 
moderate or threaten). 374 of them were also categorized as RDR (46.3%, moderate or threaten) and 189 as STDR 
(23.4%, threaten). Out of 174 patients with ground truth labeled as RDR, the IDx-DR system detected 172. This 
translates to a sensitivity of 99% (95% CI 96%, 100%). The Medios AI gives a binary output. It detected the presence 
of Referable Diabetic Retinopathy in 291 patients (36.1%). It correctly identified 166 of the 174 patients with a ground 
truth diagnosis of RDR. This translates to a sensitivity of 95% (95% CI 91%, 98%).  The diagnostic ability of both the AI 
systems including sensitivity, specificity, positive and negative predictive values are tabulated in Table 1 and 2. 
Discussion 
With the rising burden of DR, the importance of early detection and screening cannot be overstated. To address this 
glaring need, advanced technologies like AI software have emerged as promising tools for DR screening. These AI 
systems are meticulously developed and optimized using diverse datasets. Before implementing such AI software in 
real-world scenarios, it is crucial to conduct comparisons among different solutions available. In our evaluation, we 
examined the performance of two automated DR Image Assessment Softwares: Medios AI and IDx DR. The results 
exhibited comparable performance in terms of sensitivity, with Medios AI achieving 95% and IDx-DR achieving 99% in 
identifying referable DR respectively. These findings underscore the potential of these software solutions in 
facilitating early detection and screening of DR. 
Overall, the prevalence of DR in the sample analyzed was 33% for any DR and 22% for RDR, significantly higher than 
commonly reported in other studies. Scottish National Diabetic Retinopathy Screening Programme reported rates of 
RDR between 4.3% and 7%, large primary-care-based screening in California reported RDR rate of 8.2% and a 
hospital-based study in Ethiopia found any DR rate of 18.9% [6,7,8]. It is also much higher than previous estimates for 
DR prevalence in Poland [9]. This is likely a side-effect of the original screening set-up. The screening is based around 
diabetic clinics and diabetes medical centres, therefore selecting for a higher-risk population with other diabetic 
complications or difficult to control disease. A similarly high prevalence of DR was found in a study of 297 patients 
attending a tertiary center for diabetes care in India with DR prevalence of 40.8% [5]. 
Only patients who initially had images of sufficient quality for IDx-DR during the initial screening were included in this 
study. The IDx-DR image quality assistant process was used as part of the original screening program and is not 
evaluated herein. Out of 811 patients deemed gradable by IDx-DR only 4 (less than 0.5%) were excluded by the 
manual graders indicating that overall, the images selected for this study have good image quality.  
The accuracy measures for Medios AI are in line with previously published studies. Natarajan et al reported accuracy 
of the Medios AI offline, smartphone-based version, with sensitivity and specificity pairs of 100% and 88.4% for RDR 
and 85.2% and 92.0% for any DR [10]. In the aforementioned study based in a tertiary diabetes center, Medios AI 
achieved 98.8% and 86.7% sensitivity and specificity for any DR [5]. In another India based study of 900 prospectively 
included patients Medios AI achieved 83.3%, 95.5% sensitivity and specificity for any DR and 93% and 92.5% 
respectively for RDR [11]. 
Crucially, all of the above-mentioned studies were done using images gathered with the Remidio FOP mobile 
smartphone-based camera in contrast to using a stationary, full-size automatic fundus camera for this study. Previous 
studies describing Medios AI were smartphone-based, with the algorithm app being run on a smartphone, also used 
to take the fundus pictures. This is the first study outside of India to investigate using Medios AI with images from a 
stationary fundus camera in a real-world screening scenario. Images captured with different cameras may differ in 
resolution, level of detail, contrast, noise and other parameters that may influence the accuracy of an algorithm. It is 
unclear whether the software or human graders may benefit from higher resolution images and provide a more 
robust golden-standard, and if so, how significant the difference is. For this study the previous smartphone-based 
results obtained by Medios AI seem to translate into comparable accuracy when using dedicated stationary fundus 
camera. These results are similar to another study where Medios AI was evaluated on Topcon images in an Indian 
population. This demonstrates generalizability of the model performance on a desktop system. This device agnostic 
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approach is particularly useful in screening programs that have already invested in camera systems and would want 
to move towards an AI-based approach without having to replace expensive cameras. IDx-DR exceeded the sensitivity 
measures of Medios AI at the cost of lower specificity. We have previously reported sensitivity and specificity of IDx-
DR of 94% and 95% when compared to a single reader [3,12]. In this study IDx-DR retained excellent sensitivity at 
99%, with a significantly lower specificity. This was more pronounced for any DR, with IDx-DR specificity of only 44%. 
This may be explained in part by the fact that IDx-DR has been specifically marketed for the detection of more than 
mild DR, and the specificity for detection of RDR is much higher at 68% with a 99% sensitivity. For comparison, in the 
pivotal trial that led to IDx-DR receiving FDA approval, where IDx-DR was compared against a diagnosis based on a 7-
field ETDRS study with stereoscopic images and OCT, it achieved 87% sensitivity and 90% specificity for more than 
mild DR [13].  Both systems over-referred mild cases (False positives included 55% milds, 45% no DR by Medios AI; 
38% mild, 62% no DR cases by IDx-DR). Another possibility of lower specificity could be referral of patients with 
similar lesions and concurrent pathologies that were not evaluated as part of this grading. Overall, both systems 
achieved satisfactory accuracy, particularly when patient safety is concerned with excellent negative predictive 
values, meaning very few patients receiving a false-negative result. Although false-positive results generate additional 
costs and workload due to the increase in referrals, it is the patients with missed disease that raise the most concern 
whenever automated screening is debated. 
Many of the studies regarding automated analysis of DR from fundus images are sponsored or even performed 
directly by the respective software’s owner company, which raises questions regarding bias. As previously mentioned 
Medios AI does not offer a dedicated desktop application at this point, therefore it was necessary to submit the 
images to Remidio, owner of the Medios AI algorithm, for a remote analysis on their system. As the authors of this 
study collaborated remotely, we could not directly oversee or verify the Medios AI output on site.   Upon reviewing of 
the study methodology, we considered this to be a source of potential bias and asked Remidio for a way to 
independently verify some of the software’s results. We submitted the subset of images assessed by Polish graders, 
through a dedicated API (application programming interface) provided by Remidio with live results. Images were 
anonymized without changing the image content. The results were in line with those previously submitted by 
Remidio for all but 3 patients.  
Out of those three patients, for whom the initial MediosAI output differed from the verification, all three decisions 
changed from no RDR to RDR. For two of those patients the new MediosAI result now matched the grader decision of 
RDR, for the remaining patient the new MediosAI now disagreed with the grader consensus. All three of those 
patients had very subtle retinal signs. This is a study looking into MediosAI outside of the smartphone application 
which involves a custom-made deployment for the study. The discrepancies are likely due to challenges surrounding 
the implementation of the algorithm on different hardware or inconsistencies in image compression parameters 
between the version of the images submitted to Remidio for the first analysis and the version of the images sent for 
verification through the API. 
Inter-grader and intra-grader variability is known amongst DR graders. Previous studies have shown that inter-grader 
kappa scores typically range from 0.40 to 0.65 in DR grading [13-19]. The kappa values for both Polish (0.68-0.90) and 
Indian graders (0.63-0.91) in the study showed similar variability but were well within the limits showing overall good 
agreement. This ensured reliability while having the data split and graded by both groups separately. The possible 
reasons for variability amongst graders could be identification and differentiation of subtle DR features (retinal 
hemorrhages, microaneurysms, hard exudates, new vessels, intraretinal microvascular abnormalities, 
neovascularization, and surrogate markers of macular edema), variation in image quality due to artifacts, brightness 
or contrast of images. This has been found in other studies and in other fields of medical imaging as well [13-15]. Gold 
standard grading in the current study was done based on a majority decision by the graders. As the individual grades 
were converted to a binary decision for each grader before computing consensus grading there was a majority 
decision for any DR and RDR for each of the patients. The reliability of the human grading could be improved with an 
adjudication process for patients without a full consensus [14]. 
This study included only patients with good quality, non-mydriatic images, which may not be representative of the 
whole screening cohort. Using a non-mydriatic protocol may underrepresent patients with smaller pupils or media 
opacities, particularly the elderly. In a previous study about DR grader reliability, based on the same screening 
programme in Poland from which images for this study were taken, out of 495 patients only 335 were deemed as 
sufficient quality by IDx-DR and all three human graders [15]. How many of those low-quality screening encounters 
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could we image and diagnose after mydriasis remains to be seen, as is the comparative performance of both systems 
in those patients.         
In conclusion, our study compared the performance of two AI screening software, Medios AI and IDx DR, in detecting 
RDR. Both software systems demonstrated robust performance, with high accuracy and sensitivity, highlighting their 
potential as reliable tools for screening DR in real-world settings. Continued research and validation in larger and 
diverse patient populations will be essential to strengthen the evidence base and ensure the widespread adoption of 
these AI screening tools. Our study underscores the promise of these AI systems for DR screening, facilitating early 
detection and timely intervention for improved patient outcomes. 
Statement of Ethics: The Institutional Review Board (Ophthalmology 21, Foundation for the Advancement of 
Ophthalmology, Application No. 2/2022) waived the need for IRB approval and written informed consent from 
participants for this retrospective study. The study was in adherence to the tenets of the Declaration of Helsinki. 
Conflict of Interest: AG has Grants/Contracts from Alcon, Bausch & Lomb, Zeiss, Hoya, Thea, Viatris, Teleon, J&J, 
Cooper Vision, Essilor and Polpharma. AG has consulting fees / honoraria from Thea, Polpharma, Viatris and stock 
with GoCheckKids. DRP, FMS and KN are employees of Remidio Innovative Solutions. Remidio Innovative Solutions, 
Inc, USA and Medios Technologies are wholly owned subsidiary of Remidio Innovative Solutions Pvt Ltd, India. FMS 
has patents (mentioned in ICMJE) and stock (ESOP and stock, Remidio Innovative Solutions Pvt Ltd). Other authors 
declare no financial disclosures. 
Funding/Support: There was no funding for this study 
Author contribution 
AG – Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; 
Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing 
DRP – Conceptualization; Formal analysis;; Investigation; Methodology; Project administration; Resources; 
Supervision; Visualization; Validation; Writing - review & editing  
PB – Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Roles/Writing - original draft; 
Writing - review & editing  
KN –Formal analysis; Writing - original draft; Writing - review & editing  
TK - Data curation; Formal analysis; Investigation; Methodology; Software; Validation; Visualization; Roles/Writing - 
original draft; Writing - review & editing  
FMS - Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; 
Resources; Software; Supervision; Validation; Visualization; Writing - review & editing 
Data Availability Statement 
The data that support the findings of this study is not publicly available due to ethical reasons and are available on 
request from the Dr Andrzej Grzybowski (email: ae.grzybowski@gmail.com). 
 
 
References  

1.  Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan GSW, Abramoff M, Ting DSW. Artificial intelligence for 
diabetic retinopathy screening: a review. Eye 2020;34(3):451-460.   

2. Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices 
and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260-77.  

3. Grzybowski A, Brona P. Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening 
Algorithms in a Pilot Study: IDx-DR and Retinalyze. J Clin Med. 2021;10(11):2352.  

4. Lee AY, Yanagihara RT, Lee CS, Blazes M, Jung HC, Chee YE, el al. Multicenter, Head-to-Head, Real-World 
Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes 
Care. 2021;44(5):1168-1175.  

5. Sosale B, Sosale AR, Murthy H, Sengupta S, Naveenam M. Medios- An offline, smartphone-based artificial 
intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol. 2020;68(2):391-395.  

6. Looker HC, Nyangoma SO, Cromie DT, Olson JA, Leese GP, Black MW, et al. Scottish Diabetes Research 
Network Epidemiology Group; Scottish Diabetic Retinopathy Collaborative. Rates of referable eye disease in 
the Scottish National Diabetic Retinopathy Screening Programme. Br J Ophthalmol. 2014;98(6):790-5.  

D
ow

nloaded from
 http://karger.com

/ore/article-pdf/doi/10.1159/000534098/4004388/000534098.pdf by guest on 12 O
ctober 2023



 

 

7. Cuadros J, Bresnick G. EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. J 
Diabetes Sci Technol. 2009;3(3):509-16.  

8. Tilahun M, Gobena T, Dereje D, Welde M, Yideg G. Prevalence of Diabetic Retinopathy and Its Associated 
Factors among Diabetic Patients at Debre Markos Referral Hospital, Northwest Ethiopia, 2019: Hospital-Based 
Cross-Sectional Study. Diabetes Metab Syndr Obes. 2020;13:2179-2187.  

9. Kozioł M, Nowak MS, Udziela M, Piątkiewicz P, Grabska-Liberek I, Szaflik JP. First nation-wide study of diabetic 
retinopathy in Poland in the years 2013-2017. Acta Diabetol. 2020;57(10):1255-1264.  

10. Natarajan S, Jain A, Krishnan R, Rogye A, Sivaprasad S. Diagnostic Accuracy of Community-Based Diabetic 
Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. JAMA Ophthalmol. 
2019;137(10):1182-1188.  

11. Sosale B, Aravind SR, Murthy H, Narayana S, Sharma U, Gowda SGV, Naveenam M. Simple, Mobile-based 
Artificial Intelligence Algorithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diabetes 
Res Care. 2020;8(1):e000892.  

12. Grzybowski A, Brona P. A pilot study of autonomous artificial intelligence-based diabetic retinopathy 
screening in Poland. Acta Ophthalmol. 2019;97(8):e1149-e1150.  

13. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system 
for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39.  

14. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader Variability and the Importance of 
Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology. 
2018;125(8):1264-1272.  

15. Grzybowski A, Brona P, Krzywicki T, Gaca-Wysocka M, Berlińska A, Święch A. Variability of Grading DR 
Screening Images among Non-Trained Retina Specialists. J Clin Med. 2022;11(11):3125. 

16. Guan MY, Gulshan V, Dai AM, Hinton GE. Who said what: Modeling individual labelers improves classification. 
In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018. arXiv:1703.08774v2. 

17. Sedova A, Hajdu D, Datlinger F, Steiner I, Neschi M, Aschauer J, Gerendas BS, Schmidt-Erfurth U, Pollreisz A. 
Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based 
screening and human-graded ultra-widefield colour fundus images. Eye (Lond). 2022 Mar;36(3):510-516. 

18. Gangaputra S, Lovato JF, Hubbard L, Davis MD, Esser BA, Ambrosius WT, Chew EY, Greven C, Perdue LH, 
Wong WT, Condren A, Wilkinson CP, Agrón E, Adler S, Danis RP; ACCORD Eye Research Group. Comparison of 
standardized clinical classification with fundus photograph grading for the assessment of diabetic retinopathy 
and diabetic macular edema severity. Retina. 2013 Jul-Aug;33(7):1393-9.  

19. Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, Campana BJ, Phene S, Hemarat 
K, Tadarati M, Silpa-Acha S. Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic 
Retinopathy in a Real-World Nationwide Screening Program. arXiv preprint arXiv:1810.08290. 2018 Oct 18. 

 
Figure Legends: 
Fig. 1. STARD flow diagram showing the patient breakdown for the Referable Diabetic Retinopathy (RDR) analysis  
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Table 1a) Performance of Medios and IDx DR with ground truth cutoff at any DR (n=264) 

 
 
 
 
 

Automated DR Image Assessment Softwares 

Medios AI IDx DR  

Positive Negative Positive Negative TOTAL 

Reference 
Standard 

(Consensu
s grading) 

Positive 
(Mild NPDR and above 

and/or CSDME) 
235 (29%) 29 (4%) 262 (32%) 2 (0.2%) 264 

Negative 
(No DR) 

56 (7%) 487 (60%) 305 (38%) 238 (29%) 543 

TOTAL 291 516 567 240 807 

 

Table 1b) Performance of Medios and IDx DR with ground truth cutoff at RDR (n=174) 

 
 
 
 

Automated DR Image Assessment Softwares 

Medios AI IDx DR  

Positive Negative Positive Negative TOTAL 

Reference 
Standard 

(Consensu
s grading) 

 

Positive 
(Moderate NPDR and 
above and/or CSDME) 

166 (21%) 8 (1%) 172 (21%) 2 (0.2%) 174 

Negative 
(No DR and mild 

NPDR) 
125 (15%) 508 (63%) 202 (25%) 431 (53%) 633 

TOTAL 291 516 374 433 807 

Table 1c) Performance of Medios and IDx DR with ground truth cutoff at STDR (n=41) 

 

 
 
 
 

Automated DR Image Assessment Softwares 

Medios AI IDx DR  

Positive Negative Positive Negative TOTAL 

Reference 
Standard 

(Consensus 
grading) 

 

Positive 
(Severe, PDR 
or CSDME) 

40 (5%) 1 (0.1%) 39 (5%) 2 (0.2%) 41 

* 

DR – Diabetic Retinopathy, NPDR- Non-Proliferative Diabetic Retinopathy, PDR – Proliferative Diabetic Retinopathy, CSDME – Clinically 
significant Diabetic Macular Edema, RDR - Referable Diabetic Retinopathy, STDR – Sight-threatening Diabetic Retinopathy 
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Table 2: Performance Analysis of Artificial Intelligence System Compared to Reference Standard 

Values in % 

(95% CI) 
For any DR For referable DR For sight-threatening DR 

Variables Medios AI IDx-DR Medios AI IDx-DR AI Medios AI IDx-DR AI 

Sensitivity 89 (85, 93) 99 (97, 100) 95 (91, 98) 99 (96, 100) 98 (87, 100) 95 (83, 99) 

Specificity 90 (87,92) 44 (40, 48) 80 (77, 83) 68 (64, 72) NA 80 (77, 83) 

PPV 81 (76, 85) 46 (42, 50) 57 (51, 63) 46 (41, 51) NA 21 (15, 27) 

NPV 94 (92, 96) 99 (97, 100) 98 (97, 99) 100 (98, 100) NA 100 (99, 100) 
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Significance of this study

What is already known about this subject?
►► Artificial intelligence (AI) algorithms can aid in the 
diagnosis of diabetic retinopathy.

►► These algorithms work with images taken from ex-
pensive table top fundus cameras.

►► Non-availability of a fundus camera and need for 
high-speed internet access are limitations to their 
use in practice.

What are the new findings?
►► This study evaluated the performance a new AI al-
gorithm that works offline on a smart phone fundus 
camera.

►► The novel ‘offline’ Medios AI algorithm had a high 
sensitivity for the diagnosis of referable diabetic ret-
inopathy and sight threatening diabetic retinopathy 
on non-mydriatic (NM) images captured with the 
Remidio fundus on phone camera.

How might these results change the focus of 
research or clinical practice?

►► The Medios AI and the portable Remidio NM fundus-
on-phone camera together are a complete inte-
grated solution for diabetic retinopathy detection 
and can make screening accessible and scalable in 
countries with limited resources.

Abstract
Introduction  The aim of this study is to evaluate the 
performance of the offline smart phone-based Medios 
artificial intelligence (AI) algorithm in the diagnosis of 
diabetic retinopathy (DR) using non-mydriatic (NM) retinal 
images.
Methods  This cross-sectional study prospectively enrolled 
922 individuals with diabetes mellitus. NM retinal images 
(disc and macula centered) from each eye were captured 
using the Remidio NM fundus-on-phone (FOP) camera. 
The images were run offline and the diagnosis of the AI 
was recorded (DR present or absent). The diagnosis of the 
AI was compared with the image diagnosis of five retina 
specialists (majority diagnosis considered as ground truth).
Results  Analysis included images from 900 individuals 
(252 had DR). For any DR, the sensitivity and specificity of 
the AI algorithm was found to be 83.3% (95% CI 80.9% 
to 85.7%) and 95.5% (95% CI 94.1% to 96.8%). The 
sensitivity and specificity of the AI algorithm in detecting 
referable DR (RDR) was 93% (95% CI 91.3% to 94.7%) 
and 92.5% (95% CI 90.8% to 94.2%).
Conclusion  The Medios AI has a high sensitivity and 
specificity in the detection of RDR using NM retinal images.

Introduction
Diabetic retinopathy (DR) is the most 
common cause of preventable blindness. 
India has close to 73 million individuals with 
diabetes.1–3 Screening and early diagnosis of 
DR results in early referral to the specialist, 
and initiation of measures to improve 
glycemic control and reduce progression.4–6

Lack of awareness, limited access to ophthal-
mologists, need for expensive equipment 
and socioeconomic barriers are challenges 
to screening.1 Although tele-ophthalmology 
makes screening more accessible, it is not free 
from challenges like the need for pupil dilata-
tion, size and cost of fundus cameras, network 
connectivity issues, intergrader variability and 
access to ophthalmologists or trained readers.

Artificial intelligence (AI) is a potential 
scalable alternative in DR screening. It helps 
to reduce the manual burden on ophthalmol-
ogists and overcome the barriers with tele-
ophthalmology. Recent advances in machine 

learning and convolutional neural networks 
has made it possible to analyze large amounts 
of data, recognize patterns and generate 
reports. AI algorithms developed for DR 
screening (eg, Google AI, EyeArt and IDx-
DR) work on cloud-based platforms.7–10 The 
captured images are uploaded online and 
the algorithm provides an output within an 
acceptable turn over time. In low-income and 
middle-income countries, limited internet 
access or reduced bandwidth limits the use 
of these solutions. In addition, most cameras 
integrated with AI software are the tradi-
tional expensive, large fundus cameras which 
require the operator to capture a dilated 
retinal image.
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The AI algorithm by Medios Technologies, Singapore 
is to our knowledge the first offline software for DR 
screening integrated with the smart phone-based fundus 
camera, the Remidio non-mydriatic (NM) fundus-on-
phone (FOP).11 Studies evaluating the performance of 
this algorithm are limited. This study aims to evaluate 
the performance of an offline AI algorithm—Medios in 
DR screening using NM retinal images taken from the 
smartphone-based Remidio NM FOP retinal camera.

Aims and objectives
Primary aim
To evaluate the performance of the AI algorithm in 
detecting any grade of DR using NM retinal images 
captured from patients with diabetes mellitus.

Secondary aims
To evaluate the performance of the AI algorithm in 
detecting referable diabetic retinopathy (RDR). RDR is 
defined as presence of disease greater than moderate 
non-proliferative DR or the presence of diabetic macular 
edema (DME). In addition, the ability of the algorithm 
to correctly identify all cases identified as STDR (severe 
NPDR or more severe disease or the presence of DME) 
by image diagnosis was also evaluated.

Methods
The study was carried out as per the tenets of the Declara-
tion of Helsinki (NCT03572699). Informed consent was 
provided was all participants enrolled in the study.

This study prospectively enrolled patients attending 
the outpatient department of Diacon Hospital, a univer-
sity recognized, tertiary center for diabetes care and 
research, Bangalore, India between July and November 
2018. All subjects, above the age of 18 years, with diabetes 
mellitus were invited to enroll for the study. Eyes with 
significant media opacity such as corneal opacity or cata-
ract that precluded retinal imaging were excluded and 
those with known retinal vascular (artery or vein) occlu-
sion were excluded. Enrollment continued until grad-
able retinal images were obtained from 900 patients. All 
consenting individuals meeting the inclusion criteria 
were screened for DR as part of routine care.

Retinal image acquisition
Undilated retinal images were captured using the smart-
phone based ‘Remidio FOP camera’ (Remidio Innova-
tive Solutions, Bangalore, India) by a trained technician. 
Two images (ie, disc centered (nasal field) and macula 
centered (posterior pole)) were captured from each eye 
of each patient. The technician was trained to recognize 
the characteristics of an excellent image and was urged to 
capture more than one image per field of view if required 
to obtain excellent images. Two additional attempts were 
allowed to capture the image if the image was of poor 
quality (eg, an out-of-focus image, or in those with a small 
pupil).

Image grading by retina specialist
The de-identified (ie, anonymized) images with the subject 
ID were uploaded online from the FOP to an Amazon 
Web Services (AWS) hosted cloud service provided by 
the manufacturer. The images were accessed from the 
cloud by five retina specialists, that is, three fellowship-
trained vitreoretinal surgeons and two medical retina 
specialists. The retina specialists individually graded the 
set of four retinal photographs from every eye using the 
International Clinical Diabetic Retinopathy Classification 
Severity Score.12 Images were graded as no DR, mild non-
proliferative DR (mild NPDR), moderate non-proliferate 
DR (moderate NPDR), severe non-proliferate DR (severe 
NPDR) and proliferate DR (PDR). The images with DR 
were then evaluated for DME. The diagnosis of diabetic 
macular edema (DME) was graded as no DME, mild DME, 
moderate DME and severe DME. The eye with the more 
severe stage of retinopathy was considered as the final 
diagnosis for that patient, in cases where each eye had a 
different stage of disease severity. Patients whose images 
were considered as ungradable by the retina specialists 
were excluded from the final analysis. The majority diag-
nosis of the five graders was considered as the final image 
diagnosis. The patient-wise diagnosis obtained from the 
retina specialists were considered as gold standard for 
comparison. Each retina specialist was blinded to the 
diagnosis of the others and to the diagnosis of the AI.

Image analysis using AI-based offline software
The images captured from the subjects were run offline 
on the iPhone6 using the Medios AI and the diagnosis 
was recorded in binary as DR present or absent.

Description of the AI software
The AI diagnosis system developed by Medios Technol-
ogies is based on Convolutional Neural Networks. It 
consists of a first neural network for image quality assess-
ment and two other distinct neural networks that detect 
DR lesions. A final per-patient DR diagnosis is computed 
from the outputs of both DR neural networks and applied 
on all images of that patient.

Image processing is applied before feeding the images 
to the neural networks. The images are cropped by 
removing the black border surrounding the circular 
field of view typical of retinal images. They are resized 
to a common 512×512 pixels resolution. The neural 
network responsible for quality assessment is based on a 
MobileNet architecture. It consists of a binary classifier 
trained with images deemed as ungradable as well as with 
images deemed of sufficient quality. If the output is nega-
tive, a message prompts the user to recapture the image.

The other two neural networks are based on an Incep-
tion-V3 architecture and have been trained to separate 
healthy images from images with referable DR (moderate 
NPDR and above). The final output is a binary recom-
mendation of referral to an ophthalmologist. No mild 
NPDR images have been used during training of the AI. 
The system has thus been engineered to maximize the 
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Figure 1  Flow chart depicting study enrollment.

sensitivity for referable DR and the specificity for any DR. 
Both networks independently analyze the images. One 
uses images that have been preprocessed by a contrast 
enhancement image processing algorithm, while the 
other does not. A linear classifier merges outputs of both 
networks into a final per-image prediction. A patient is 
deemed as a referable case if the prediction for one or 
more images is positive.

A comprehensive dataset consisting of images taken in 
a variety of conditions has been used for training, with a 
proportion of it taken using NM and/or low-cost cameras. 
These include 4350 NM images taken during screening 
camps with the Remidio FOP, and 14 266 images captured 
with a KOWA vx-10 mydriatic camera and 34 278 images 
come from the EyePACS dataset. Half of the training set 
contained DR cases, and the other half healthy ones.

Neural networks traditionally run on computationally 
powerful servers to which the end user connects and 
sends images. In this case, the neural network is deployed 
directly on the phone, leveraging smartphone technol-
ogies to make full usage of the inbuilt hardware. The 
whole AI diagnosis pipeline runs offline on the iPhone 
of the Remidio NM FOP. ‘Offline’ refers to the computa-
tional unit on which AI inference is performed. Thanks 
to leveraging on the high-performance capabilities of the 
smartphone with Core Machine Learning platforms and 
Open Graphics Library, image processing is done directly 
on the Graphics Processing Unit instead of relying on 
a connection to a server on the internet. There is no 
degradation in performance of the algorithm as a result 
of deploying it offline versus online. This is because, 
the offline mode is primarily a method of deployment 
that uses the smartphone to run the same algorithm as 
it would have on a cloud server. With newer updates, 
continuously trained models can be deployed through 
the app store, which will enable the model to get the best 
inferencing convenience, re-training and continuous 
deployment using the iPhone as a platform.

The interface and the report also provide a visual 
representation of the areas of the retinal images that are 
responsible for a positive diagnosis. This is based on a 
deep learning technique called class activation mapping.

Two distinct datasets have been used for internal vali-
dation and fine-tuning of the linear classifier. Both data-
sets had not been used for training and consist of images 
taken in the mydriatic mode of the camera. One dataset 
was captured at Dr Mohan’s Diabetes Specialities Center 
in Chennai, while the other was captured at Diacon 
Hospital in Bangalore. These results were computed 
independently of the institutions who provided the data. 
The datasets consisted of 3038 and 1054 images, respec-
tively. The images used for training and internal valida-
tion of the AI do not overlap with those captured for the 
SMART study.

Outcome measures
The primary aim was to determine the sensitivity, spec-
ificity, positive predictive value (PPV) and negative 

predictive value (NPV) of the AI algorithm in detecting 
all DR compared with the gold standard diagnosis by 
retina specialists. The secondary aims were to determine 
the sensitivity, specificity, PPV and NPV of the algorithm 
in the diagnosis of RDR. RDR was defined as moderate 
NPDR or more severe disease or the presence of DME. 
The ability of the algorithm to correctly identify all cases 
identified as sight threatening DR (STDR) by image 
diagnosis was also evaluated. STDR was defined as severe 
NPDR or more severe disease or the presence of DME.

Statistical analysis
The Food and Drug Administration (FDA) mandated 
superiority cut-offs (for AI algorithms for DR screening) 
for sensitivity and specificity were 85% and 82.5%.7 The 
sample size required for a sensitivity of 85%, given a sensi-
tivity of 75% under the null hypothesis using a one-sided 
test, 0.025 alpha and 90% power was 171 individuals with 
RDR. The sample size required for a specificity of 82.5% 
given a specificity of 75% under the null hypothesis using 
a one-sided test, 0.025 alpha and 90% power was 682 indi-
viduals with no RDR (combined no DR and mild NPDR). 
The minimum sample required was 853 and we planned 
to continue enrollment until gradable images could be 
obtained from 900 individuals.

All data were stored in Microsoft Excel and was analyzed 
using StataCorp V.14.2. The diagnosis of the AI was tabu-
lated against the image diagnosis (reference standard) 
by constructing 2×2 tables. The sensitivity, specificity, PPV 
and NPV with 95% CIs were calculated, and area under 
the curve (AUC) plotted for all DR and RDR. In individ-
uals diagnosed with STDR, the sensitivity (ability of the 
AI to correctly identify those with disease) was measured. 
Intergrader agreement was measured by calculating the 
kappa statistic.

Results
The study enrolled 922 patients and the analysis included 
images from 900 patients (figure 1). Based on the image 
diagnosis, there was no evidence of DR in 648 participants 
(72%). Mild NPDR was seen in 51 (5.67%), moderate 
NPDR in 163 (18.11%), severe NPDR in 3 (0.33%) and 
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Figure 3  Example of the output of the Medios artificial 
intelligence algorithm in an individual with a diagnosis of 
referable diabetic retinopathy.

Table 1  Performance of the Medios AI

Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC

All DR 83.3% (80.9% to 85.7%) 95.5% (94.1% to 96.8%) 87.8% (85.7% to 90%) 93.6% (92% to 95.2%) 0.9
RDR 93% (91.3% to 94.7%) 92.5% (90.8% to 94.2%) 78.2% (75.5% to 80.9%) 97.8% (96.9% to 98.8%) 0.88

AI, artificial intelligence; AUC, area under the curve; DR, diabetic retinopathy; NPV, negative predictive value; PPV, positive predictive value; 
RDR, referable diabetic retinopathy.

Figure 2  Area under the curve (AUC) of the Medios artificial 
intelligence algorithm for all diabetic retinopathy (all DR) and 
referable diabetic retinopathy (RDR).

PDR in 35 (3.89%). Mild DME was present in 12 (4.76%), 
moderate DME in 32 (12.69%) and severe DME in 3 
(1.19%) individuals with DR with different grades of 
non-proliferative or proliferative DR. The intergrader 
agreement (quadratic weighted kappa) between the indi-
vidual ophthalmologists and the majority diagnosis was 
between 0.79 and 0.91. Common causes of differences 
in diagnosis between retina specialists and the majority 
diagnosis were missed single microaneurysms (MA), and 
differentiating dot hemorrhages from MA.

The AI classified 239 (26.5%) of images as DR and 
661 (73.4) % as no DR. The performance of the AI in 
detecting all DR and RDR is summarized in table  1. 
The AUC for all DR and RDR are shown in figure 2. An 
example of the output from the Medios AI algorithm 
with an image diagnosis of RDR is shown in figure 3.

The AI was able to correctly diagnose 76/80 cases 
graded as STDR as having signs of retinopathy. Sensi-
tivity for STDR was 95.2% (95% CI 88.2% to 98.6%). 
The three PDRs missed by the AI were postlaser images 
with no active changes visible. When these three images 
were excluded, the AI correctly identified 76/77 cases of 
STDR as having signs of retinopathy. The sensitivity for 
STDR was found to be 98.7% (95% CI 92.9% to 99.7%).

The kappa that is, agreement between the AI and the 
opthalmologists’ diagnosis was found to be 0.8.

Discussion
To our knowledge, this is the first study to evaluate the 
performance of an AI algorithm for DR screening using 
NM images captured from a portable smartphone-based 
fundus camera. The analysis from this large study showed 
that the Medios AI has a high sensitivity in the detection 
of RDR and STDR.

The use of AI algorithms as fully automated screening 
solutions for DR diagnosis is on the rise. The only one 
to have made it past FDA’s cut is IDx-DR on the basis of 
a clinical study conducted with mydriatic retinal images 
obtained from 900 individuals. In this study, the sensitivity 
and specificity of the IDx-DR system in identifying RDR 
was 87% and 90%, meeting the FDA superiority sensitivity 
and specificity cut-offs of 85% and 82.5%, respectively. 
Despite its accuracy, it is not recommended for evalu-
ating rapidly progressive DR.7 Limitations include the 
need for integration with expensive traditional fundus 
cameras. The Iowa Detection Program, a clinical study 
conducted to evaluate IDx-DR V.X2.1, from mydriatic 
retinal photographs, showed a sensitivity of 96.8% and 
specificity of 87.0%.8

The performance of the Google AI was studied on the 
EyePACS-1 and Messidor 2 datasets. In the EYE-PACS 
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dataset, the sensitivity and specificity of the algorithm 
for RDR was 90.1% (95% CI 87.2% to 92.6%) and 98.2% 
(95% CI 97.8% to 98.5%). In the Messidor 2 dataset, 
the sensitivity and specificity was 86.6% (95% CI 80.5% 
to 90.7%) and 98.4% (95% CI 97.5% to 99%) for the 
detection of RDR.10 In a prospective study, the Google 
AI was validated across two sites in India. The sensitivity 
and specificity of the algorithm for the detection of RDR 
at Aravind Eye Hospital was 88.9% (95% CI 85.8% to 
91.5%) and 92.2% (95% CI 90.3% to 93.8%); and 92.1% 
(95% CI 90.1% to 93.8%) and 95.2% (95% CI 94.2% to 
96.1%) at Shankara Nethralaya.13

EyeArt (Eyenuk, Woodland Hills, California, USA) 
using dilated retinal images of 296 patients captured by 
the Remidio NMFOP was validated by Rajalaksmi et al. 
The authors reported a sensitivity of 95.8% and speci-
ficity of 80.2% for detecting any DR and a sensitivity of 
99.1% and a specificity of 80.4% for detecting STDR.14 In 
a recent retrospective study, Bhaskaranand et al reported 
a sensitivity and specificity of 91% using EyeArt on 101 
710 individuals.9 Another study by Ting et al with multiple 
retinal images taken with conventional fundus cameras 
from multiethnic cohorts of people with diabetes, 
reported a sensitivity and specificity for identifying RDR 
of 90.5% and 91.6%.15

Most of these AI algorithms require high-speed 
computational power and internet access for immediate 
reporting, in addition to the need for expensive desktop 
fundus cameras. This sets the Medios AI apart from other 
AI solutions, in being the first offline end-to-end solution 
integrated on the smart phone camera.

The Remidio FOP is an FDA510k cleared medical 
device validated in head-to-head studies against Topcon 
TRC 50DX and Zeiss FF450. It is the only smartphone-
based device shown to have a high sensitivity and spec-
ificity in detection of all grades of DR, in non-mydriatic 
imaging.11 16 The results seen with the Medios AI using 
images captured from the Remidio FOP meet the 
FDA superiority cut-offs and are comparable to results 
observed with other AI algorithms, such as Google AI, 
EyeArt or IDx-DR for the detection of RDR.7 9 13 In a 
previous study by Rajalakshmi et al published in Eye, the 
Eyenuk AI algorithm, EyeArt was found to have very high 
sensitivity and specificity for detection of RDR and STDR 
when used on the Remidio FOP camera images (despite 
EyeArt not having been earlier trained on the Remidio 
FOP images).14

A recent study by Natarajan et al evaluated the perfor-
mance of the Medios AI using dilated retinal images 
captured using the Remidio FOP from 231 individuals 
with diabetes. The images were captured by a healthcare 
worker in a primary healthcare community screening 
camp. The authors reported that the sensitivity and spec-
ificity of the AI in the diagnosis of RDR as 100% and 
88.4%, and for any DR as 85.2% and 92%.17

There are a few differences between the study done 
by Natarajan et al and our study.17 Natarajan et al evalu-
ated the AI’s performance using mydriatic images taken 

during community screening by healthcare workers. A 
sensitivity analysis was performed to assess the AI’s perfor-
mance using both good quality images, and images that 
did not meet the minimum quality standards of the AI. In 
this analysis, the sensitivity of the AI for RDR remained 
unchanged, while the specificity dropped to 81.9%. The 
increase in false positive outputs were attributed to image 
quality. This did not translate to a concern regarding 
patient safety as all individuals with RDR were detected by 
the AI. In contrast, our study used NM images captured 
in a clinic setting by a trained camera technician on a 
larger number of individuals. Both studies demonstrate a 
high sensitivity and specificity for the detection of RDR. 
The ease of use of the device by a community healthcare 
worker, and results observed with both mydriatic and NM 
images support the use of smart phone fundus imaging 
and AI-based reporting for DR screening.

Cloud-based AI algorithms require internet access for 
real time reporting. In countries like India, where mass 
screening is the need of the hour, access to continuous 
electricity and internet is a constraint. The FOP with 
inbuilt offline AI can address these operational chal-
lenges in rural and urban areas in the low-income and 
middle-income countries with limited resources. The 
offline mode of AI is advantageous in the context of 
clinical work flow and ground deployment constraints, 
to ensure that DR screening can move forward without 
interruptions.

In this study, we observed that the AI was unable to 
identify laser marks as ‘DR’ in those who had ‘no active 
DR changes’ post pan-retinal photocoagulation. It is 
worthwhile to note that other studies exclude individuals 
who have undergone laser treatment and hence it is not 
possible to ascertain if other AI algorithms also behave 
similarly.7 13 18 19 Considering the practical application of 
these AI algorithms to be in primary care and screening 
(and not in tertiary hospitals visited by those with DR 
postlaser treatment), this finding in no way should under-
mine the robustness of this algorithm’s performance.

Images from eight individuals were considered clin-
ically ungradable (figure  1). The AI algorithm had 
flagged six of these images as poor quality, but did 
provide an output for these images. Since there was no 
ground truth for comparison with, these images were 
excluded from the analysis. However, the ability to iden-
tify signs of disease pathology invisible to the human eye 
in less than ideal conditions—a trait of deep learning 
algorithms—deserves merit. In order to report if AI algo-
rithms perform better than a clinician on poor quality/
hard to grade images, it may be necessary to analyze this 
with a larger pool of ungradable images. Hence, at this 
point in time, in a real-life situation, during screening, it 
is necessary to use caution, and refer cases where the AI 
quality check flags the image as poor quality.

Limitation of our study was that it only included NM 
images. Hence, screening in elderly or in those with a 
small pupil (<3 mm) can be a challenge. Dilatation with 
a drop of 1% tropicamide solution may be necessary in 
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these cases. The strengths of the study include prospec-
tive validation of the AI in a large sample against the 
diagnosis of five retinal specialists. Future studies 
that assess the performance of the AI compared with 
the adjudicated diagnosis, the clinical diagnosis and 
studies that evaluate integration of the AI into the clin-
ical workflow are needed. We acknowledge that the AI 
in its current version works only integrated with the 
FOP and has the ability to only provide a diagnosis of 
referral versus no referral. Even though the algorithm 
is currently unable to give an output of STDR directly, 
we believe that every end-user should be aware of the 
ability of the AI to correctly identify those with STDR 
(at the highest risk of vision loss) and be aware of the 
rates and reasons of a missed diagnosis in its current 
version. The AI is currently being trained to grade DR, 
provide a diagnosis of DME and STDR in the future 
versions (which will continue to be deployed offline 
on the iPhone), to assist in triaging and immediate 
referral.

Our study is the first in validating the use of Medios 
AI in a large clinical setting using NM images. Our 
results show that the AI has a high sensitivity and speci-
ficity in the detection of RDR. This is the only AI system 
that works offline and produces real time reports on a 
smart phone. Multiple large-scale studies that validate 
the algorithm are necessary. If results are reproducible 
in both the mydriatic and NM setting, the Medios AI 
has the potential to be the scalable solution to make DR 
screening accessible at the primary care level.
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Agreement of a Novel Artificial Intelligence Software With
Optical Coherence Tomography and Manual Grading

of the Optic Disc in Glaucoma
Sujani Shroff, MD,* Divya P. Rao, MD,† Florian M. Savoy, MS,‡

S. Shruthi, MD,* Chao-Kai Hsu, MS,‡ Zia S. Pradhan, MD,*
P. Jayasree, V., MD,* Anand Sivaraman, PhD,§ Sabyasachi Sengupta, MD,∥

Rohit Shetty, MD, PhD,* and Harsha L. Rao, MD, PhD¶

Précis: The offline artificial intelligence (AI) on a smartphone-based
fundus camera shows good agreement and correlation with the
vertical cup-to-disc ratio (vCDR) from the spectral-domain optical
coherence tomography (SD-OCT) and manual grading by experts.

Purpose: The purpose of this study is to assess the agreement of
vCDR measured by a new AI software from optic disc images
obtained using a validated smartphone-based imaging device, with
SD-OCT vCDR measurements, and manual grading by experts on
a stereoscopic fundus camera.

Methods: In a prospective, cross-sectional study, participants above
18 years (Glaucoma and normal) underwent a dilated fundus
evaluation, followed by optic disc imaging including a 42-degree
monoscopic disc-centered image (Remidio NM-FOP-10), a
30-degree stereoscopic disc-centered image (Kowa nonmyd WX-3D
desktop fundus camera), and disc analysis (Cirrus SD-OCT).
Remidio FOP images were analyzed for vCDR using the new AI
software, and Kowa stereoscopic images were manually graded by 3
fellowship-trained glaucoma specialists.

Results: We included 473 eyes of 244 participants. The vCDR
values from the new AI software showed strong agreement with
SD-OCT measurements [95% limits of agreement (LoA)=−0.13 to
0.16]. The agreement with SD-OCT was marginally better in eyes
with higher vCDR (95% LoA=−0.15 to 0.12 for vCDR> 0.8).
Interclass correlation coefficient was 0.90 (95% CI, 0.88–0.91). The
vCDR values from AI software showed a good correlation with the
manual segmentation by experts (interclass correlation coef-
ficient= 0.89, 95% CI, 0.87–0.91) on stereoscopic images (95%
LoA=−0.18 to 0.11) with agreement better for eyes with vCDR>
0.8 (LoA=−0.12 to 0.08). Conclusions: The new AI software
vCDR measurements had an excellent agreement and correlation
with the SD-OCT and manual grading. The ability of the Medios

AI to work offline, without requiring cloud-based inferencing, is an
added advantage.

Key Words: artificial intelligence, deep learning, glaucoma, glaucoma
screening, glaucoma diagnostic imaging

(J Glaucoma 2022;00:000–000)

G laucoma is one of the leading causes of irreversible
blindness with more than 70 million cases worldwide.

Projections suggest an even higher prevalence in the future.1

Early diagnosis of glaucoma is of paramount importance to
preserve as much visual function as possible. Tele-glaucoma,
with digital optic disc images captured and transmitted to
glaucoma specialists, has recently received a lot of interest.2

These programs aim at facilitating early diagnosis and
periodic monitoring of patients with glaucoma. Some of
these models have also been found to be cost-effective with
significant savings per quality-adjusted life years gained.3

Although the diagnosis of glaucoma is best established
with multimodal testing including visual fields and optical
coherence tomography (OCT), optic disc evaluation remains
the cornerstone for clinical diagnosis. Most often the
appearance of the optic disc arouses an initial suspicion and
further testing confirms the presence of glaucoma. There-
fore, optic disc photography has been at the heart of tele-
glaucoma efforts globally. In addition, smartphone-based
disc imaging has widened the reach of tele-glaucoma to
regions where access to eye care has been very difficult.4–6

Technology is being increasingly mobilized for
home-based diagnostics, not only for glaucoma but for
other diseases such as diabetic retinopathy (DR).6–8 This
labor-intensive process of manual grading is overburdening
physicians. Artificial intelligence (AI)-based software has
therefore been deployed for screening images. Patients with
the probable disease are automatically filtered and referred
to physicians. This eases the specialist’s load.9–11 Yet, this
workflow has limitations. Images may be acquired with
different devices. They then need to be transmitted to a
server for AI interpretation. The report is then transmitted
back to the point of care and disseminated. Logistic
difficulties such as a high-speed internet connection (5G or
Wi-Fi), continuous electricity supply and tabletop imaging
devices are all implementation challenges preventing the
wide use of such cloud-based AI tele-glaucoma systems.

In this study, a portable, handheld, smartphone-based
imaging device was used for acquiring fundus images. The
device image quality has previously been validated inDOI: 10.1097/IJG.0000000000002147
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comparison to tabletop devices for the detection of DR.7,8,12

The device is also equipped with an offline AI-based soft-
ware capable of effectively detecting DR.13,14 To the best of
our knowledge, there is no other AI-based glaucoma
detection software, which is integrated into a smartphone,
and which can work in offline automatically. The purpose of
this study was to determine the agreement between the
vertical cup-to-disc ratio (vCDR) measurements acquired
from this offline AI software and the values obtained from
manual grading by specialists on stereoscopic images and
from SD-OCT, in eyes with and without glaucomatous disc
changes.

METHODS
This was a cross-sectional study conducted at Nar-

ayana Nethralaya, a tertiary eye Care center in Bengaluru,
South India, between July 2021 and February 2022. The
methodology adhered to the tenets of the Declaration of
Helsinki and was approved by the Institute’s Ethics Com-
mittee (EC Ref No: C/2021/02/02). Written informed con-
sent was obtained from all participants. The study included
all consecutive, consenting patients above 18 years of age
attending the glaucoma clinic with varying degrees of
glaucomatous disc damage. Patients without glaucoma were
recruited from the general ophthalmology clinics and acted
as controls. Participants with acute or sudden vision loss,
and those deemed to have narrow angles on gonioscopy and
could not be safely dilated were excluded. Similarly, patients
with coexisting ocular pathologies and those with significant
media opacity (eg, advanced cataracts) precluding adequate
view of the disc were also excluded. In addition, participants
having any condition that, in the opinion of the investigator,
would preclude participation in the study (eg, uncontrolled
intraocular pressure, active eye infection, <3 months post
glaucoma filtering surgery, <1-month postcataract surgery,
unstable medical status including blood pressure or glycemic
control, photosensitivity, etc.) were also excluded.

Clinical Assessment
After recording the history and demographics, all

participants underwent a complete ophthalmic evaluation
including the best-corrected visual acuity, slit-lamp exami-
nation, intraocular pressure by Goldmann Applanation
Tonometer, gonioscopy using a 4-mirror goniolens, and
dilated fundus examination. A dilated slit-lamp evaluation
was done to assess cataract status using The Lens Opacities
Classification System III (LOCS III).15 Any nuclear scle-
rosis/opalescence grade 3 (NS/NO3) and/or cortical cataract
C4 and/or posterior subcapsular cataract P4 was categorized
as “advanced immature” cataract and excluded from the
study. A dilated fundus evaluation was performed. It
included vCDR measurement in increments of 0.05 and
identification of other typical features of glaucomatous optic
disc viz. neuroretinal rim thinning, notching, splinter

hemorrhages, retinal nerve fiber layer defects, and beta zone
peripapillary atrophy. After dilated fundus evaluation, all
patients underwent the following imaging protocol:

Imaging Protocol
All participants underwent all 3 imagingmodalities by an

ophthalmic photographer. A single 42-degree disc-centered
image per eye was captured on the fundus on phone (FOP
NM-10) device (Remidio Innovative Solutions Pvt. Ltd.). All
acquired images were subjected to evaluation by the Medios
AI-Glaucoma software (Medios Technologies, Remidio
Innovative Solutions Pvt. Ltd) for image quality and vCDR.
The image quality assessment is based on the visualization of
the optic disc, surrounding nerve fiber layer and third-order
vessels. If the image was of insufficient quality, the operator
was alerted to take another image of better quality. The
operator made a maximum of 2 attempts to get an image of
sufficient quality. After image acquisition, the estimated
vCDR value provided by the software was recorded for
analysis. Figure 1 shows the workflow of theMedios Artificial
Intelligence software.

All patients also had a single 30-degree disc-centered
stereoscopic image taken using the standard tabletop fundus
camera (Kowa NM WX-3D stereoscopic camera). After
this, patients underwent imaging of the optic disc using an
SD-OCT device (Zeiss Cirrus SD-OCT). The optic nerve
head and retinal nerve fiber layer was imaged using the optic
disc cube scan with the vCDR being recorded for this
comparative analysis. All images were stored as JPEG files
after removing all patient identifiers and assigning a ran-
domly generated unique numerical identifier linked to the
participant’s study ID number.

Interpretation by Glaucoma Specialists
All stereoscopic images acquired using the Kowa

device were further evaluated by 3 fellowship-trained
glaucoma specialists (S.S., S.S., and J.P.V.). The disc and
cup outlines were manually delineated to obtain the semi-
automated vCDR measurement using the proprietary Kowa
software installed on the device user interface. The inner
margin of the scleral rim was outlined for the disc margin,
and the bend of optic vessels was outlined for the cup
margin. The glaucoma specialists were masked to the clin-
ical examination details and findings from other imaging
devices.

Automated vCDR Analysis on Remidio FOP Using
Medios AI-Glaucoma Tool

The Medios AI-Glaucoma is a proprietary, fully
automated, deep learning–based tool that runs on mono-
scopic fundus images captured using Remidio FOP. It
provides an automated segmentation of the optic disc and
cup with a vCDR measurement.

FIGURE 1. The artificial intelligence software workflow. Figure 1 can be viewed in color online at www.glaucomajournal.com.
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The AI system consists of 2 deep neural networks.
First, an assistive network detects the presence and the
center coordinates of the optic disc. A region of interest
image is then cropped around the disc. This cropped image
is then fed to the main segmentation neural network, which
returns the outline of the disc and the cup. The cup-to-disc
ratio is finally computed with these outlines.

The main segmentation network consists of FPN
(Feature Pyramid Network) architecture with a Resnet-50
backbone. It outputs a segmentation mask with 3 classes
(background, cup, and disc). It was fine tuned from
imagenet with a combination of disc and focal losses.
Extensive data augmentation was used. This consisted of
shifting, scaling, rotation, flipping, sharpening, and blurring,
as well as slight modifications of brightness, contrast, hue,
saturation, and value.

The network was trained using 4483 images in the train
set (3700 images from South Asian population and 783
images from Caucasian population) and 560 images in the
validation set. This included both dilated and undilated
images. The train set had a maximum proportion of images
coming from the target device, Remidio FOP (1862 images
from Remdio FOP, 2621 images from 3 different standard
desktop fundus cameras) and was also validated on the same
device on which it was intended to be deployed. The ground
truth for training was obtained by manual segmentation of
the optic disc and cup by 5 fellowship-trained glaucoma
specialists.

Precision Study
A repeatability (precision) substudy was conducted on

37 eyes of 33 patients with varying vCDR values. Each
subject’s eye in the substudy underwent the imaging proto-
col 3 times, imaged by 2 different operators.

Outcome Measures
The primary outcome measure was the agreement

between AI software vCDR value and SD-OCT–based
vCDR along with manual grading by specialists on stereo-
scopic images. Secondary outcomes were a correlation
analysis and a pairwise assessment of the vCDR between the
AI and SD-OCT, as well as manual grading. A pairwise
analysis for glaucoma risk was performed in subcategories
based on manual vCDR expert grading (low vCDR< 0.6,
moderate vCDR≥ 0.6 to ≤ 0.8, and high vCDR> 0.8).

Sample Size
Assuming 90% power, a precision error of 5% and the

95% limits of agreement (Bland-Altman LoA) of 0.2 in
vCDR between the AI software and SD-OCT or manual
grading by experts,16 the minimum required sample size was
calculated to be 465 eyes.

Statistical Analysis
All continuous variables were expressed as mean with

SD or median with interquartile range. Group differences
between continuous variables were analyzed using the Stu-
dent t test for parametric or the Wilcoxon rank sum test for
nonparametric distributions. Categorical variables were
expressed as proportions (n, %) and group differences were
analyzed using the χ2 test.

The vCDR obtained from the AI software was com-
pared with the other 2 modalities. The 95% limits of
agreement between the vCDR from the AI software and
other modalities were assessed using the Bland-Altman

analysis and plotted. Interclass correlation coefficients (ICC
—2-way mixed effects, absolute agreement, and multiple
measurements) were also calculated and presented along
with 95% CIs to understand correlations between diagnostic
modalities. ICC values < 0.5 were considered as poor cor-
relation, values between 0.5 and <0.75 were considered as
moderate correlation, values between 0.75 and <0.90 were
considered good correlation and values ≥ 0.90 were con-
sidered excellent correlation.17 Correlations between vCDR
from AI software and the other modalities were assessed
using Pearson correlation coefficient and plotted using
scatter plots with locally weighted smoothening (LOWESS)
curves.

All data were entered into Microsoft Excel and ana-
lyzed using STATA 12.1 (Stata Corp). All P-values <0.05
were considered statistically significant.

RESULTS
We recruited 290 participants (580 eyes) for the study.

Of 580 eyes, we excluded 25 eyes because of other causes of
optic neuropathy, 20 eyes because of missing images from
any of the modalities. In addition, 43 eyes where AI quality
check failed and 22 eyes where image quality was deemed
insufficient by the experts were excluded. This encompassed
all eyes that failed the AI quality check as the AI has been
designed to give a reliable output on an image with mini-
mum image quality. We also excluded all eyes, which failed
image quality on at least 2 modalities (AI quality, fundus
image quality for grading on FOP and stereo images,
SD-OCT images with signal strength <6).

We thus included 473 eyes of 244 participants in this
study. Of these, the manual-based vCDR was <0.6 in 152
eyes (32%), between 0.6 and 0.8 in 273 eyes (58%) and > 0.8
in the remaining 48 eyes (10%). Table 1 shows a comparison
of agreement between vCDR from the AI and the other
modalities.

Comparison of vCDR Between Medios AI and SD-
OCT

The vCDR from the AI software was delivered in <10
seconds. It showed strong agreement with SD-OCT meas-
urements; and the upper and lower 95% LoA of vCDR were
well within 0.2 units of the OCT. The agreement with SD-
OCT got stronger with advancing vCDR (Fig. 2A). It was
marginally better for eyes with vCDR > 0.8 compared to
those with vCDR< 0.6 (Table 2). The overall mean absolute
error was 0.02 and the AI software showed excellent cor-
relation with the vCDR from the SD-OCT (95% CI of
ICC= 0.88–0.91). A Pearson correlation analysis also
showed good correlation between the AI and SD-OCT

TABLE 1. Overall Comparison of Vertical Cup-to-Disc Ratio From
the Artificial Intelligence With the 2 Other Modalities

Comparison
with MAE

LL of
agreement*

UL of
agreement*

ICC† (95%
CI)

SD-OCT 0.02 −0.13 0.16 0.90 (0.88–0.91)
Manual

grading
0.03 −0.18 0.11 0.89 (0.87–0.91)

*Using Bland-Altman analysis.
†Two-way mixed effects, absolute agreement, multiple measurements.
ICC indicates interclass correlation coefficient; LL, lower limit; MAE,

mean absolute error; SD-OCT, spectral-domain optical coherence tomog-
raphy; UL, upper limit.
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(Pearson correlation coefficient= 0.82). Figure 2B depicts a
2-way scatter plot with a LOWESS curve showing correla-
tion between vCDR obtained from the OCT and AI
stratified by 3 groups based on manual grading of
the vCDR.

The eye with the best agreement between AI and SD-
OCT and with worst agreement is shown as in Figures 3A
and B.

Comparison of vCDR Between the Medios AI and
Manual Grading

On Bland-Altmann plot (Fig. 4A), the lower LoA of
vCDR was within −0.18 units and the upper limit was 0.11.
Similar to SD-OCT, the agreement of the vCDR between
AI and manual grading was higher for eyes with vCDR
> 0.8 (Table 2). The vCDR from the AI software also
showed a good correlation with the vCDR from the manual
grading (95% CI of ICC= 0.87–0.91). Pearson correlation
analysis also revealed a good correlation between the
manual vCDR grading and AI (Pearson correlation coef-
ficient= 0.82). Figure 4B depicts a 2-way scatter plot with a
LOWESS curve showing correlation between vCDR

obtained from manual grading and AI stratified by 3 groups
based on manual grading of the vCDR.

The difference in correlation between AI and SD-OCT
when compared with AI and manual grading was not
statistically significant (P= 0.24).

Precision Study
Repeatability on 37 eyes of 33 patients imaged 3 times

generated a total of 111 images of good quality. The vCDR
measurements were found to have an excellent correlation,
ICC was 0.98 (95% CI, 98.1–99.4). The mean coefficient of
variation was 2.87. The vCDR output on 31 (84%) eyes were
within 0.05 on all attempts, irrespective of the operator or
repeat. Supplementary Table 1, Supplemental Digital Content
1, http://links.lww.com/IJG/A672 presents the breakdown of
the results by vCDR categories.

DISCUSSION
The vCDR reported by the new AI software was found

to have strong agreement with vCDR measurements from
SD-OCT and manual grading. The limits of agreement for
vCDR between the AI and SD-OCT, as well as between AI
and manual grading were well below the 0.2 units threshold,
an acceptable limit even between 2 manual graders.16 The
agreement of the AI with both the modalities improved with
advancing vCDR.

The Medios AI-Glaucoma is a fully automated software
integrated on the same smartphone used to acquire images via
the Remidio NM-FOP device. It uses deep learning techno-
logy and is trained based on ground truth provided by glau-
coma specialists on a diverse dataset of several thousand
monoscopic images obtained using the Remidio FOP device
primarily, along with several other desktop cameras. The
algorithm was trained with images from different ethnicities
because there have been reports of racial and ethnic dis-
parities in the appearance of optic nerve head, RNFL thick-
ness, and neuroretinal rim characteristics.18 Manual grading
was the cornerstone for the AI development process. This is
demonstrated by the excellent agreement between the manual
and AI vCDR values. Although clinical assessment by a
glaucoma specialist is standard clinical practice, it comes with
an inherent limitation of subjectivity.16,19 Hence, we also
compared the AI to SD-OCT, an objective, repeatable, and
well-established tool for optic disc analysis. The acceptable
differences obtained against manual grading on stereo images
and SD-OCT can be attributed to several factors. Different

FIGURE 2. A, Bland-Altman plot showing trends in agreement
with 95% CIs between CDR obtained from the OCT and AI. B, A
2-way scatter plot with a locally weighted smoothening curve
showing correlation between vertical CDR obtained from the OCT
and AI stratified by 3 groups based on manual grading of the
vCDR. AI, artificial intelligence; CDR, cup-to-disc ratio; OCT,
optical coherence tomography. Figure 2 can be viewed in color
online at www.glaucomajournal.com.

TABLE 2. Comparison of Vertical Cup-to-Disc Ratio From the AI
With the 2 Other Modalities With Respect to Glaucoma Risk

Comparison with MAE
LL of

agreement*
UL of

agreement*

For CDR <0.6 (n= 152)
SD-OCT 0.03 −0.13 0.18
Manual grading −0.05 −0.21 0.11

For CDR from 0.6 to 0.8 (n= 273)
SD-OCT 0.02 −0.11 0.15
Manual grading −0.03 −0.16 0.10

From CDR > 0.8 (n= 48)
SD-OCT −0.015 −0.15 0.12
Manual grading −0.02 −0.12 0.08

*Using Bland-Altman analysis.
LL indicates lower limit; MAE, mean absolute error; SD-OCT, spectral-

domain optical coherence tomography; UL, upper limit.

Shroff et al J Glaucoma � Volume 00, Number 00, ’’ 2022

4 | www.glaucomajournal.com Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright r 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Auth
or'

s C
op

y



modalities use different anatomic landmarks to measure
vCDR, and the precision in identifying landmarks differs
between SD-OCT, stereoscopic disc imaging, and mono-
scopic images. In another similar study, albeit with a much
smaller sample size of 50 eyes (28 eyes with glaucoma),
Varshney et al20 also found excellent correlation (ICC= 0.86)
between the vCDR obtained from the AI software and a
swept source OCT device.

The repeatability of the automated measurements is a
key metric to assess the utility of the tool. This is especially
important in the context of screening by health care workers
where more than 1 imaging attempt may be necessary to
obtain an image of sufficient quality. The correlation was
found to be excellent even on multiple attempts. It was well
within the acceptable variability seen on SD-OCT.21 The
minor variability is explainable by the slightly different
visibility of the optic disc landmarks in each image.

A multitude of software is available for automated
detection of the vCDR from glaucomatous and normal
eyes.9,11,22–26 However, most of these either use a high-end
desktop camera or require an online upload of images to the
cloud, followed by a cloud-based AI analysis and an online
report generation. To the best of our knowledge, this new AI
is the only software that works offline on a smartphone fun-
dus camera and can produce the vCDR values instantly
without the need for an active internet connection. The
obvious advantages of such software, in addition to its
accuracy in computing vCDR, make it an excellent proposi-
tion for tele-glaucoma or AI-based screening and evaluation,
especially in remote areas without any access to health care.

The AI system performed well when compared with
manual grading of stereo images from a high-end desktop
fundus camera. This shows that monoscopic images captured
on a smartphone-based fundus camera is sufficient to make a
reliable segmentation of the optic disc and cup and to estimate
vCDR. To better understand how the tool might perform in
the real world particularly on images of not ideal quality,
we also performed a subanalysis on the exclusions (n= 65).

As expected, the mean absolute error between the AI and the
other 2 modalities was higher than that reported in the main
analysis, but within 0.1 (vs. SD-OCT 0.08, vs. manual grading
0.1). The upper and lower 95% LoA of vCDR were within
0.21 units of the SD-OCT but higher when compared against
manual grading (LLA and ULA against SD-OCT −0.21 and
0.16, respectively, against manual grading −0.19 and 0.27,
respectively). This shows better agreement between the 2
objective modalities. The lower agreement with manual
grading on this subset could possibly be explained by difficulty
in manual human segmentation on those images with poorer
image quality. This further demonstrates the robustness of the
AI model.

Unlike several other systems which only output a
measurement value, this system displays a visible segmen-
tation of the disc and cup delineating the neuroretinal
rim.22–27 This offers more potential for a clinical decision
assist tool to the physician. Furthermore, this tool is 1
component of a more comprehensive automated screening
system for Referable Glaucoma using Remidio FOP images.
The vCDR model complements another classification
model. This other model reports the presence of referable
glaucoma based on structural changes such as neuroretinal
rim abnormalities, retinal nerve fiber layer defects, disc
hemorrhages, and peripapillary atrophy. It displays areas of
abnormality based on Class Activation Maps. The utility of
this entire system is now evaluated in a prospective vali-
dation study that has just concluded. The tool has been
developed for screening. It is not a replacement for a spe-
cialist who provides definitive services. It is meant to identify
the potential undetected cases in the community and move
them to the referral care pathway for confirmatory diagnosis
and further management. This system caters to the
requirements of remote screening and is affordable. The
portable, nonmydriatic fundus camera (Remidio NM-FOP-
10) is a fraction of the cost of a desktop system with a per
scan cost of the Referable Glaucoma tool of under 3$ in a
developing country like India.

FIGURE 3. A, Reference images for comparison between AI, manual grading and SD-OCT (example for best mean absolute error
between AI and SD-OCT). B, Reference images for comparison between AI, manual grading, and SD-OCT (example for worst mean
absolute error between AI and SD-OCT). AI, artificial intelligence; FOP, fundus on phone; SD-OCT, spectral-domain optical coherence
tomography; vCDR, vertical cup-to-disc ratio. Figure 3 can be viewed in color online at www.glaucomajournal.com.
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This study has 2 key advantages. The sample size was
relatively large with a wide distribution of eyes across the
spectrum of vCDR. Second, the comparison was made
with 2 modalities commonly relied upon by glaucoma
specialists in the clinic. One limitation of this study is its
restriction to a homogenous South Asian population.
Further validation will be essential in other populations to
provide evidence to generalizability. As the first step, we
validated the tool in a tertiary glaucoma center because of
availability of relevant equipment and specialist resources.
As expected, a larger proportion of cases was in the
0.6–0.8 vCDR range, having been referred to a glaucoma
specialist to provide a definitive diagnosis of those with
suspicious looking discs with higher vCDR. Hence, the
distribution of vCDR is different from what one would
expect in a population setting. The next step is a com-
munity-based validation on true distribution of vCDR on
undilated images that would provide further evidence on
the utility of this nonmydriatic system.

In conclusion, the vCDR from this new, offline AI
software was found to have an excellent agreement and good
correlation with the vCDR from the SD-OCT and manual

grading by experts on stereo images. However, real-world
data are required to see whether the vCDR given by this
model when used in remote locations matches vCDR values
obtained by clinical examinations of the same patients in
clinics. Furthermore, the upcoming results of a larger vali-
dation study will provide evidence on the comprehensive
glaucoma AI software which this tool is part of. It will show
whether glaucoma can be accurately detected from various
optic disc features in addition to this vCDR tool.
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BACKGROUND/OBJECTIVES: An affordable and scalable screening model is critical for undetected glaucoma. The study 
evaluated the performance of an offline, smartphone-based AI system for the detection of referable glaucoma against two 
benchmarks: specialist diagnosis following full glaucoma workup and consensus image grading.
SUBJECTS/METHODS: This prospective study (tertiary glaucoma centre, India) included 243 subjects with varying severity of 
glaucoma and control group without glaucoma. Disc-centred images were captured using a validated smartphone-based fundus 
camera analysed by the AI system and graded by specialists. Diagnostic ability of the AI in detecting referable Glaucoma 
(Confirmed glaucoma) and no referable Glaucoma (Suspects and No glaucoma) when compared to a final diagnosis 
(comprehensive glaucoma workup) and majority grading (image grading) by Glaucoma specialists (pre-defined criteria) were 
evaluated.
RESULTS: The AI system demonstrated a sensitivity and specificity of 93.7% (95% CI: 87.6–96.9%) and 85.6% (95% CI:78.6–90.6%), 
respectively, in the detection of referable glaucoma when compared against final diagnosis following full glaucoma workup. True 
negative rate in definite non-glaucoma cases was 94.7% (95% CI: 87.2–97.9%). Amongst the false negatives were 4 early and 3 
moderate glaucoma. When the same set of images provided to the AI was also provided to the specialists for image grading, 
specialists detected 60% (67/111) of true glaucoma cases versus a detection rate of 94% (104/111) by the AI.
CONCLUSION: The AI tool showed robust performance when compared against a stringent benchmark. It had modest over- 
referral of normal subjects despite being challenged with fundus images alone. The next step involves a population-level 
assessment.
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INTRODUCTION
Glaucoma is a leading cause of global irreversible blindness. The 
prevalence is projected to increase from 76 million in 2020 to 
111.8 million in 2040 [1]. Undetected glaucoma raises the risk of 
blindness and as the disease advances to late stages, the 
treatment and care cost significantly increase, posing a financial 
burden. This necessitates timely diagnosis and treatment [2, 3].

Glaucoma is a progressive degeneration of the optic nerve, with 
loss of retinal ganglion cells, thinning of the retinal nerve fibre layer, 
and progressive excavation of the optic disc [4]. Manual assessment 
of the optic nerve head (ONH), a crucial component of glaucoma 
diagnosis is labour-intensive and dependent on trained specialists. 
Fundus photography along with technology like Artificial Intelli
gence (AI) can help overcome this challenge.

AI helps triaging patients and ensuring emergent cases are 
referred appropriately to ophthalmologists [5, 6]. Global research 
for the development of an automated tool for glaucoma 
screening using fundus images has been promising [7, 8]. 

However, to the best of our knowledge, this is the first study 
validating an offline AI system in a prospective clinical study. 
Additionally, algorithms have typically been developed for bulky, 
expensive desktop fundus camera systems. This poses several 
challenges to widespread adoption. Requirements for stable 
internet connectivity for reporting and continuous power supply 
are barriers to accessibility in remote areas. To overcome these 
challenges, a novel AI for referable Glaucoma has been integrated 
offline on a validated smartphone-based, portable fundus camera. 
It can run in seconds without the need for internet or cloud-based 
inferencing [9]. The purpose of this study is to evaluate the 
performance of this novel system in detecting referable glaucoma 
on monoscopic fundus images.

MATERIALS AND METHODS
A prospective, cross-sectional study was conducted at Narayana 
Nethralaya, a tertiary eye care centre, in South India between July 2021 
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and February 2022. The study adhered to the tenets of the Declaration of 
Helsinki and was approved by the Institute’s Ethics Committee (EC Ref No: 
C/2021/02/02). The study included consecutive patients visiting the clinic 
and written informed consent was obtained from all participants. The 
performance of the novel AI system (Medios AI-Glaucoma, Medios 
Technologies, Remidio Innovative Solutions, Singapore) was evaluated. 
The AI is integrated on a portable, smartphone-based fundus camera 
(Remidio NM-FOP 10, Remidio Innovative Solutions Pvt Ltd, Bengaluru, 
India). The AI system was compared against two benchmarks: standard of 
care i.e., final diagnosis provided by Glaucoma specialists following a 
thorough glaucoma evaluation as well as against the majority image 
grading diagnosis by three glaucoma specialists.

The study included consecutive, consenting patients above 18 years of 
age attending the glaucoma clinic with varying degrees of glaucomatous 
optic disc damage. In the control group, patients without glaucoma were 
recruited from the general ophthalmology clinics. Normal subjects were 
those who either walked into the general clinic for a routine evaluation or 
those who were referred from other hospitals or other departments of the 
same hospital for a glaucoma workup. The details of the exclusion criteria 
are presented in Supplementary Methods Section 1.

Clinical evaluation
After recording the history and demographics, all participants underwent 
a complete ophthalmic evaluation including best corrected visual acuity 
(BCVA), slit lamp examination, intraocular pressure (IOP) by Goldmann 
Applanation Tonometer and gonioscopy using a 4-mirror goniolens. A 
dilated fundus evaluation included vertical cup-to-disc ratio (vCDR) 
measurement in increments of 0.05, and identification of other typical 
features of glaucomatous optic disc viz. neuroretinal rim thinning, 
notching, splinter haemorrhages, retinal nerve fibre layer defects and 
beta zone peripapillary atrophy. Following this, all patients underwent the 
imaging protocol described below by Optometrists with 1 year of 
experience.

Imaging protocol. A single 42-degree disc-centred image per eye was 
captured on the fundus on phone non-mydriatic (FOP NM-10) device 
(Remidio Innovative Solutions Pvt. Ltd, Bangalore, India). All acquired 
images were subjected to evaluation by the inbuilt image quality 
algorithm. The image quality assessment is based on the visualization 
of the optic disc, surrounding nerve fibre layer and 3rd-order vessels. If the 
image was of insufficient quality, the operator was alerted to take another 
image. The operator made a maximum of 2 attempts to get an image of 
sufficient quality.

Patients also underwent a single 30-degree disc-centred stereoscopic 
image captured on a standard tabletop fundus camera (Kowa NM WX-3D 
stereoscopic camera, Kowa, Japan). Following this, they underwent 
imaging of the optic disc using an SD-OCT device (Zeiss Cirrus SD-OCT, 
Dublin, CA). The optic nerve head and retinal nerve fibre layer were 
imaged using the optic disc cube scan.

Visual field examination (Humphrey visual field 24-2 or 10-2 pro
gramme) was performed in all new cases to establish the diagnosis of 
glaucoma and in confirmed cases if it was beyond 1 year since the last 
reliable fields.

All images were stored as JPEG files after removing patient identifiers 
and assigning a randomly generated unique numerical identifier linked to 
the participant’s study ID number.

Final diagnosis
The glaucoma specialists (SS, SS, JVP) corroborated all the test results for a 
final diagnosis and categorized each eye into normal, glaucoma suspects, 
or glaucoma based on a predefined criteria [10] (Supplementary Methods 
Section 2). The worse eye diagnosis constituted the patient-level 
diagnosis. This was used as a reference standard against the binary 
output of the AI for referable glaucoma.

‘Referable glaucoma’ referred to those with glaucoma and ‘No referable 
glaucoma’ included glaucoma suspects and normal.

Fundus image quality control and grading
All the images captured using the Kowa stereoscopic camera and the 
FOP-NM 10 device were evaluated by three fellowship-trained glaucoma 
specialists (SS, SS, JVP). They were masked to the clinical examination 
details, investigational reports as well as each other’s grading. The graders 
initially evaluated the quality of the images as excellent, acceptable, or 

insufficient based on the criteria mentioned in Supplementary Methods 
Section 3. Excellent and acceptable grades qualified as sufficient image 
quality. A predefined criterion from previous population studies was used 
by the specialists for making a provisional diagnosis (unlikely glaucoma, 
disc suspects or likely glaucoma) of glaucoma as mentioned in 
Supplementary Methods Section 4 [11–14]. Glaucoma severity was 
determined based on visual field MD as per Hodapp-Parish and Anderson 
criteria. Mean Deviation (MD) less than –6 dB was early, −6 to –12 dB was 
moderate and worse than –12 dB was defined as severe disease [15].

‘Referable’ glaucoma referred to those with likely glaucoma and ‘No 
referable glaucoma’ included disc suspects and unlikely glaucoma.

Automated referable glaucoma AI detection system
The AI system consists of two main components: a cup and disc 
segmentation model and a binary classification model. The segmentation 
model has been described and externally validated in a prospective study 
[16]. The classification model segregates images with glaucoma from 
suspects and normal eyes. It has been trained using 6674 images. 1813 
(27.2%) were glaucoma, 1142 (17.1%) were suspects and 3719 (55.7%) 
were normal eyes. 4373 images (65.5%) were captured using the Remidio 
FOP (target deployment device), and 2301 (34.5%) using desktop fundus 
cameras. 5082 images (76.1%) were captured on a South Asian 
population, and 1592 (23.9%) on a Caucasian population. The model 
uses a ResNet-50 architecture and was pre-trained on the ImageNet 
dataset. Additionally, the datasets were carefully curated during devel
opment such that there was no overlap of patient data during training 
and testing. Two other assistive AI models were trained. The first is a 
quality check which outputs an indication of sufficient image quality for a 
reliable glaucoma diagnosis. The second is a disc localization model. It 
detects the location of the centre of the disc in the retinal image. The disc 
coordinates are used to crop a region of interest around the disc. This is a 
pre-processing step for the two main AI models (segmentation and 
classification algorithms). Supplementary flowchart summarizes the 
different elements of the AI system. This study was conducted following 
AI development and internal testing.

The images of all the participants were analysed using the AI tool. The 
AI graded the images as Referrable or No Referable Glaucoma. Referrable 
glaucoma included those with likely glaucoma requiring immediate 
referral and no referable glaucoma included disc suspects and no 
glaucoma. The AI also categorizes images with high VCDR (vCDR 0.7–0.85) 
and no other glaucomatous disc changes as ‘high VCDR (disc suspect)’ 
with a non-urgent referral to the ophthalmologist.

The primary outcome measure was the diagnostic ability of AI in 
detecting referable Glaucoma when compared to a final diagnosis made 
by a glaucoma specialist following a complete glaucoma evaluation. The 
secondary outcome measures were (1) diagnostic ability of the AI when 
compared against a majority image grading diagnosis provided by 
glaucoma specialists (2) comparing the image quality and diagnostic 
accuracy in the detection of referable glaucoma using monoscopic and 
stereoscopic fundus camera images and (3) repeatability analysis of the AI 
output.

Sample size calculation
The minimum required sample calculated to detect the sensitivity of 80% 
(and addressing a specificity of 80%) with a precision of 10% was 154 
patients. This incorporates a 40% prevalence of referable Glaucoma and a 
95% confidence level. A sample size of 200 patients was also sufficient to 
measure rate of discordance in referrable glaucoma between the AI 
software and glaucoma specialist from the true rate of discordance by 
≤8% assuming a true discordance rate ranging between 10 and 50%, and 
sensitivity of at least 80%. We aimed for at least 250 patients for the 
current study assuming a 25% attrition due to incomplete tests, dropouts 
and quality/reliability issues from various devices.

Statistical analysis
A patient-level analysis included the diagnosis of the worse eye for the 
presence of referable glaucoma. A 2*2 confusion matrix was used to 
compute the sensitivity and specificity of the AI. Additional metrics 
included the likelihood ratios (LR) and accuracy along with Wilson’s 95% 
Confidence Intervals (CI). A weighted kappa statistic (pairwise) was used 
to determine the interobserver agreement. Kappa of 0–0.20 was 
considered as slight agreement, 0.21–0.40 as fair, 0.41–0.60 as moderate, 
0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement [17]. 
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Image quality of the monoscopic and stereoscopic images was assessed 
on a majority grading basis as a proportion of sufficient (excellent and 
acceptable images) and insufficient quality images for a reliable glaucoma 
diagnosis. Additionally, the AI image quality algorithm was evaluated by 
image-ability, defined as the percentage of images determined as 
sufficient quality by the AI within the subset of images deemed sufficient 
by the graders [18]. All data was stored in Microsoft Excel and was 
analysed using Python 3.7, as well as the NumPy 1.21 and SciPy 1.7 
libraries.

RESULTS
A total of 485 consecutive patients were screened and 293 
participants were recruited. The mean age was 59 ± 12 years 
(range, 21, 83), 92% were greater than 40 years and 49% (n = 144) 
were female. There were 242 eyes with early to moderate cataract 
and 143 pseudophakia included in the study. 11 subjects were 
excluded as they did not complete the study protocol. Of the 282 
participants (549 eyes), 39 were excluded (45 eyes) due to failed 
AI image quality in one or both eyes (image capture technology 
failure). 243 participants were included in the final analysis (Fig. 1).

Comparison of AI output against final diagnosis following a 
comprehensive glaucoma workup
Following a thorough glaucoma evaluation of 243 subjects, 
111 subjects (45.67%), were diagnosed to have glaucoma, 56 
(23.05%) were glaucoma suspects and 76 (31.28%) were normal. 
The AI system accurately detected glaucoma in 104 out of the 
111 subjects. The sensitivity and specificity were 93.7% (95% CI: 
87.6–96.9%) and 85.6% (95% CI: 78.6 – 90.6%), respectively in the 
detection of referable glaucoma. The true negative rate in definite 
non-glaucoma cases (i.e., the proportion of patients being normal 
on thorough glaucoma evaluation which have been correctly 
identified as no glaucoma by the AI) was 94.7% (95% CI: 
87.2–97.9%). There were 7 (6.3%) false negative glaucoma cases 
(three diagnosed as disc suspect and four as normal by AI). On a 
closer evaluation, 4 were found to be early, 3 were found to be 
moderate glaucoma and none with advanced glaucoma. There 
were 19 (14.4%) false positive cases that included 15 diagnosed as 
disc suspects and 4 determined to be normal by the specialists. 
The performance of the AI system is summarized in Table 1. 
Representative outputs of correctly (True Negative and True 

Positive) and incorrectly (False Negative and False Positive) 
identified images by the algorithm along with class activations 
maps for the positive images are presented in Fig. 2.

Comparison of monoscopic images (FOP NM-10) vs 
stereoscopic images (Kowa) for image quality and agreement 
for glaucoma diagnosis
282 participants had a total of 549 images (15 one-eyed subjects), 
which were graded by three blinded, glaucoma specialists. Of 
these, 45 images failed AI quality check and 504 images (from 275 
participants) were of sufficient quality. (Supplementary Table 1). 
493/504 (97.8%) images on the FOP and 496/503 (98.6%) images 
on the Kowa were deemed to be of sufficient quality for a reliable 
glaucoma grading by the graders. Table 2 describes the details of 
image quality analysis between the two systems. The three 
specialists had consensus on 95.8 to 96.7% of the images on both 
systems for making a diagnosis. A pair-wise kappa analysis was 
between 0.72–0.74 on the FOP and 0.70–0.79 on the Kowa 
(Table 2).

Evaluation of the image quality AI on the FOP: 56 out of 549 
FOP images received an insufficient image quality label by either 
the AI or the image graders or had no consensus. The graders 
identified 23 images as ungradable, and 4 had no consensus. 
Thus, 522 images were deemed to have sufficient quality by the 
graders. Amongst them, an additional 29 (5.6%) received an 
insufficient image quality from the AI. Thus, image-ability, was 
high at 94.4% (493/522). Supplementary Table 1 provides a 
summary of the results.

Comparison of AI against image grading by Glaucoma 
specialists on FOP NM-10 Fundus camera
Of 282 subjects, 229 were included for analysis of AI performance 
against image grading on FOP (Fig. 1). The specialists detected 
60% (67/111) of true glaucoma cases by grading just fundus 
images versus a detection rate of 94% (104/111) by the AI. Table 3
details the performance of the algorithm against image grading.

Repeatability
A repeatability analysis was performed on a subset of 32 eyes. 
This included 15 eyes with a final diagnosis of glaucoma and 17 
eyes with a final diagnosis of no glaucoma randomly chosen. Each 

Fig. 1 Flow diagram for participant disposition in medios automated referable glaucoma detection artificial intelligence system study.
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eye was imaged three times, with all three resulting images being 
fed to the AI independently. For 30/32 eyes, the output of the AI 
was identical amongst all three runs. The two cases with 
disagreements consisted of one glaucoma and one normal case. 
The repeatability was thus 93.75%.

DISCUSSION
An alarming trend shows more than 90% of glaucoma in the 
community being undetected in developing nations. Additionally, 
more than 50% have advanced disease and nearly 20% are blind 
at the time of diagnosis [19–21]. Compounding this problem is an 
acute shortage of glaucoma specialists. Studies in developing 
countries have shown that Glaucoma screening can be cost- 
effective [22, 23]. This necessitates a tool that leverages 
technologies like AI to address the inequities in screening making 
it effective and labour-sparing in at least the high-risk 

populations. Adding to the challenge is the absence of objective, 
standardized criteria that is universally agreed upon for diagnos
ing suspicious discs. This leads to subjectivity in not only the 
diagnosis but also the management of glaucoma suspects and 
early disease. We aimed to develop a novel, affordable screening 
tool using fundus images that can accurately identify those well- 
established glaucoma cases who are undetected in the commu
nity. They would benefit from immediate referral and manage
ment or would otherwise go blind. Due to the low prevalence of 
the disease, the algorithm was developed with the idea of 
maximizing the sensitivity for those with established glaucoma 
while maintaining a high specificity to avoid an over-referral or 
alarm amongst normal subjects.

Generally, structural changes in the optic nerve head (ONH) like 
neuroretinal rim abnormalities and enlargement of ONH excava
tion precede functional loss detectable on visual field assessment 
[4]. Hence, these morphological changes are considered early 

Fig. 2 Representative outputs of the AI system along with Class Activation Maps (CAMs) for the positive cases.

Table 1. Referable Glaucoma AI performance when compared against final diagnosis following comprehensive glaucoma evaluation.

Glaucoma specialist diagnosis (n = 243)

Confirmed Glaucoma Glaucoma Suspects Normal

(a) Confusion matrix—AI system versus final diagnosis by Glaucoma specialists

AI Diagnosis Referable Glaucoma 104 (43%) 15 (6%) 4 (2%)

No Referable Glaucoma Disc Suspect 3 (1%) 19 (8%) 18 (7%)

No Glaucoma 4 (2%) 22 (9%) 54 (22%)

Total 111 56 76

(b) Confusion matrix—AI system versus final diagnosis based on Glaucoma severity (HAP criteria [15]) by the specialists (N = 111 confirmed glaucoma)

Glaucoma severity diagnosis by specialists

Early Moderate Advanced

AI Diagnosis Referable Glaucoma 26 22 56

No Referable Glaucoma Disc Suspect 2 1

No Glaucoma 2 2

(c) AI performance in the detection of Referable Glaucoma (Final diagnosis)

Sensitivity 93.7% (95% CI: 87.6–96.9%)

Specificity 85.6% (95% CI: 78.6–90.6%)

Accuracy 89.3% (95% CI: 84.7–92.9%)

Positive likelihood ratio 6.51 (95% CI: 4.28–9.90)

Negative likelihood ratio 0.07 (95% CI: 0.04–0.15)

Recall- No glaucoma 94.7% (95% CI: 87.2–97.9%)
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biomarkers for glaucomatous optic neuropathy (GON). Fundus 
cameras capturing monoscopic colour images, red-free images or 
stereo images of the optic disc and RNFL have been widely used 
to detect structural changes and monitor glaucoma [24]. 
Stereoscopic imaging has better visualization of ONH morphology 
due to depth perception. However, these systems are large, 
unwieldy and expensive. In the current study, while the 
proportion of excellent quality images on the traditional desktop 
stereo camera was higher (82.1% Kowa vs 73.8% on FOP), the 
overall sufficient quality images for a reliable glaucoma diagnosis 
between the monoscopic (97.8% sufficient quality) and stereo
scopic fundus camera (98.6% sufficient quality) were similar. 
While the specialists identified a marginally higher number of 
likely glaucoma cases on the stereoscopic camera (33% on Kowa 
vs 29% on FOP), the AI performance on the smartphone camera 
was unaffected when compared against imaging grading on 
either device. The AI correctly detected all the glaucoma cases 
identified by the specialists on either device (Sensitivity of AI 
100% against both for image-based grading). This shows that the 
monoscopic fundus camera integrated with the robust AI has the 
potential for Glaucoma screening. It has significant public health 
relevance as it is easier to capture images on a portable fundus 
camera that is a fraction of the cost of a high-end expensive 
stereo fundus camera. This highlights the potential application of 
the AI system in a population-based setting to be used either 
independently or along with teleophthalmology as a clinical 
assist tool.

To present the accuracy of the AI system in referable glaucoma 
detection, we compared the AI system against two benchmarks: 
final diagnosis following a thorough glaucoma evaluation 
(standard of care) and image grading by glaucoma specialists 
on the same set of patients. This provides a better understanding 
of the reliability of image grading for glaucoma diagnosis. The AI 
system had a sensitivity and specificity of 93.7% and 85.6%, 
respectively, in comparison against standard of care. The 7 false 
negative cases were early (4) and moderate (3) glaucoma cases 
with no advanced case being missed. False positives (19 cases, 
14.4%) included both disc suspects and normal cases being 
flagged as glaucoma by the AI. While the specificity seems 
relatively low, it is essential to recognize that the false positives 
were primarily disc suspects (15/19 cases) who would require a 
glaucoma workup and periodic yearly monitoring while not 
requiring urgent attention. This could also be attributable to a 
larger proportion of suspicious discs being evaluated in a tertiary 
centre. Interestingly, only 4 out of 76 normal subjects were 
considered referable glaucoma. Hence, the true negative rate in 
the definite non-glaucoma cases, or in other words, accurately 
identifying those without glaucoma was 94.7% (72/76; 95% CI: 

87.2–97.9%). This is critical in a disease like glaucoma where 
minimal over-referral of normal subjects is pivotal to preventing 
overburdening of an already stretched health care system. On a 
closer evaluation, three of these subjects had a higher-than- 
average vCDR. It must be noted that at the population level, the 
prevalence of disease is low and hence the distribution of those 
with no glaucoma will be significantly higher. Hence, population- 
level specificity is to be evaluated in a subsequent study. Direct 
comparison to other global research groups is challenging due to 
differences in disease definitions, comparison standards, models 
utilized and the population in which the algorithm was validated. 
However, our model performed on par with other groups despite 
having a more difficult benchmark of comparison. Supplementary 
Table 2 summarizes various glaucoma detection studies using AI 
and Deep Learning on fundus photographs [25–33]. In the future, 
to improve the accuracy of the deep learning algorithm and 
further reduce the false negatives, more data coming from early- 
moderate cases along with corresponding OCT information 
during development will be useful.

The AI had a sensitivity of 100% for referable Glaucoma when 
compared against the consensus image grading of three glaucoma 
specialists. Inspecting the specificity of 71% (47 false positives) 
against image grading, we observed that 55% (26 cases) of false 
positives were graded as disc suspects and 21 as unlikely glaucoma 
by the specialists. Interestingly, 18 among these 26 cases and 10 
out of 21, respectively, were diagnosed as having glaucoma on full 
evaluation contributing to the apparently low specificity on image 
grading. Overall, the specialists detected 60% (67/111) of true 
glaucoma cases by grading just fundus images versus a detection 
rate of 94% (104/111) by the AI on the same images. We 
hypothesize that the algorithm may have learnt, during the 
development phase, to identify subtle structural changes on 
fundus images that may not be very evident to the human eye. It 
shows great promise as a screening tool. However, it is important to 
address that this AI system cannot replace an ophthalmologist in 
decision-making on the final diagnosis for glaucoma. The gold 
standard still remains an ophthalmologist’s diagnosis based on 
history, detailed clinical exam along with interpretation of multi
modal testing (structural and functional assessment) while exclud
ing other causes of optic neuropathy.

Most AI algorithms require fast internet connectivity and high 
computational power for reporting [25, 30]. Additionally, they are 
developed to work on high-end, costly tabletop fundus cameras 
limiting their utility in resource-constrained settings [18, 34]. The 
current AI system utilizes lightweight deep neural network 
architectures that are deployed on a low-cost, smartphone- 
based fundus camera without compromising on efficiency or 
accuracy, which is a key highlight. This makes the implementation 

Table 2. Comparison of monoscopic images (FOP NM-10) vs stereoscopic images (Kowa) for image quality and agreement for glaucoma diagnosis.

Image grading by specialists

Monoscopic images (FOP NM-10) 
N = 504 images

Stereoscopic images (Kowa) 
N = 503 images

Excellent 372 (73.8%) 413 (82.1%)

Acceptable 121 (24.0%) 83 (16.5%)

Quality of fundus images Total sufficient quality 493 (97.8%) 496 (98.6%)

Insufficient 8 (1.6%) 3 (0.6%)

No consensus 3 (0.6%) 4 (0.8%)

Consensus amongst graders on 
diagnosis (Patient level)

Yes 229 (95.8%) 233 (96.7%)

No 10 (4.2%) 8 (3.3%)

Inter-grader agreement (Cohens 
kappa, Glaucoma diagnosis)

Ophthalmologist 1 and 2 0.72 0.70

Ophthalmologist 1 and 3 0.74 0.76

Ophthalmologist 2 and 3 0.73 0.79

D.P. Rao et al.  

1108

Eye (2024) 38:1104 – 1111



of screening programmes in the outreach practical. To the best of 
our knowledge, it is the first offline, on-the-edge software for 
screening eye conditions such as Diabetic Retinopathy and 
Glaucoma that can give a report within a few seconds without 
the need for internet connectivity [35–37]. The portable design of 
this device with its embedded AI system makes it user-friendly 
and can be used by minimally trained health workers [38, 39].

Strengths of the study: This is the first prospective study 
evaluating an offline AI for screening referable glaucoma using 
smartphone-based monoscopic fundus images and showing 
promising performance. Additionally, the accuracy has been 
determined against two benchmarks: comprehensive evaluation 
and image grading by glaucoma specialists. The diagnostic criteria 
for both evaluations were standardized to lower the chance of 
subjective assessment. A stringent assessment against the gold 
standard despite the AI being presented with fundus images allows 
for a robust evaluation of the AI system. Adequate sample size with 
a good distribution of disease spectrum from no glaucoma to 
suspects to confirmed glaucoma ensured a thorough evaluation.

Limitations of the study: The performance of the AI has been 
evaluated in a South Asian population. To understand the 
generalizability of the model across geographies, a multi-ethnic 
validation will be essential. The purpose of this study was to 
evaluate the performance of this novel algorithm in a tertiary 
glaucoma centre (controlled setting) given the necessity to 
establish a robust ground truth with a comprehensive glaucoma 
work-up requiring several diagnostic modalities (clinical, struc
tural and functional). Expectedly, the number of glaucoma and 
suspect cases was higher. While the results are promising, further 
evaluation in a real-world community setting is essential to 
understand whether the results can be extrapolated to a 
population setting with true disease prevalence, which is 
currently underway.

In conclusion, the novel AI integrated on a portable fundus 
camera can have a significant impact in screening for referable 
glaucoma. It can enable healthcare workers in low resource 
environments to screen and help break barriers to eyecare access. 
While this tool shows promising results, it is essential to start 
working towards strengthening the existing healthcare system to 
take on the additional burden of patients being moved into the 
referral care pathway. This will ensure that improved patient 
outcome is ultimately achieved.

SUMMARY

What was known before

● Currently, available tools are not ideal for glaucoma screen
ing.

● Global research has found promising utility in using AI 
algorithms on fundus images for screening. However, they 
have typically been developed for bulky, expensive desktop 
fundus cameras with cloud-based inferencing that pose 
several challenges for widespread adoption.

● There is also a lacuna in terms of a prospective clinical study 
to validate these solutions against a gold standard diagnosis 
of glaucoma.

What this study adds

● A novel, offline AI deployed on a portable, affordable and 
validated smartphone-based fundus camera shows a robust 
performance in detecting referable glaucoma in a prospective 
clinical study.

● Comparison against gold standard diagnosis demonstrates Ta
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the true potential of the solution to triage undetected 
glaucoma cases to the referral care pathway.

● It holds promise for a scalable solution as it provides instant 
reports and overcomes several barriers associated with 
current technology for screening in the community.
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Glaucoma Screening Report 

PATIENT DETAILS 

SCREENING RESULT 

Right Eye Left Eye 

VCDR - 0.78 (Borderline High) VCDR - 0.71 (Borderline High) 

Referable Glacuoma - Refer immediately for further glaucoma evaluation 

FUNDUS IMAGES 

Right Eye Left Eye 

Doctor's Signature 
iMedios Al is a physician assist software, not a replacement for an ophthalmologist's diagnosis. 
[rhe results are only indicative of a high probability of Glaucoma/Suspicion of Glaucoma. This 
report does not screen for any medical or vision conditions apart from glaucoma. The images 
on this report are only thumbnails and must not be used for diagnostic purposes. Any heat 
maps shown are only indicative of some probable areas of abnormality. rem1d10' - medios 
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