
Deploy Rapydo Scout (Observability) in your AWS environment

For any question or issues please contact us at: info@rapydo.io

Introduction

This documentation will guide you through the deployment of Rapydo Observability
using a single EC2 instance running in your AWS VPC.

What We Do

Rapydo is all about helping you get the most out of your Amazon RDS for MySQL and
Amazon Aurora databases hosted in your AWS account (referred to as MySQL from
onwards).
Whether you’re trying to fix performance bottlenecks, scale your infrastructure, or
simply make sure everything is running as efficiently as possible, we’ve got the tools
to make it happen. We provide real-time monitoring, actionable insights, and
recommendations to keep your databases in top shape—without the headaches.

Why Rapydo?

We know that no two databases are the same. That’s why Rapydo is designed to
adapt to your unique setup, whether you’re running a single MySQL instance or
managing multiple clusters across the globe. We don’t believe in cookie-cutter
solutions. Instead, we give you the flexibility to monitor, tweak, and optimize your
databases exactly how you want.

Plus, we’re all about transparency. With Rapydo, you get a clear view of what’s
happening under the hood of your MySQL instances. No more guesswork or reactive
troubleshooting—our platform gives you the information you need, when you need it,
so you can stay ahead of potential issues.

mailto:info@rapydo.io
https://docs.rapydo.io/introduction#why-rapydo

Who Is It For?

Whether you’re a database administrator (DBA), a part of a development team, or
DevOPS, Rapydo is built with you in mind. Our goal is to make database monitoring
and optimization as seamless as possible, so you can focus on building great
products rather than putting out database fires. No matter your level of expertise, our
platform is designed to guide you through best practices, optimizations, and
performance enhancements.

How We Help You?

● Real-Time Monitoring: Stay updated on your MySQL database health with
instant insights into performance metrics.

● Performance Tuning**: Our platform helps you fine-tune your databases by
offering suggestions based on best practices.

● Scalability: Whether you’re dealing with a single database or an entire fleet,
Rapydo scales with you, offering support for both horizontal and vertical
scaling.

● Custom Alerts**: Set up alerts tailored to your unique environment, so you
know about issues before they become problems.

● Easy Setup**: We don’t believe in complicated onboarding processes. Getting
started with Rapydo is quick and easy, so you can begin optimizing in no time.

https://docs.rapydo.io/introduction#who-is-it-for
https://docs.rapydo.io/introduction#how-we-help-you

Pre-requisites

● For deployment skills prerequisite:
you need a DevOps with basic AWS skills equal to minimum Cloud Practitioner

● ideally Solution Architect, DBA or System Administrator or Cloud Operations
certification knowledge level

● For operations/usage of Rapydo skills prerequisite: Data Engineer certification
or equal

● You must have an existing AWS account, VPC, AZ and subnet to deploy our
solution.

● you must have existing RDS instances of Amazon RDS for MySQL and Amazon
Aurora database, 5.7 and 5.8

● Performance Insights must be enabled, otherwise Rapydo functionality will be
limited

● RDS instance sizes not compatible with Performance Insights - please do not
use them with Rapydo:

○ Db.t2.micro
○ Db.t2.small
○ Db.t3.micro
○ Db.t3.small
○ Db.t4g.micro
○ Db.t4g.small

● AWS regions supported for deployment: all AWS commercial regions are
supported. No support for AWS China and GovCloud.

Overview

Description of a typical deployment of Rapydo in AWS Resources:

● your existing RDS instances (s) that Rapydo will be monitoring and optimizing
● New resources created by Rapydo deployment Cloud Formation Template

(see below)

● one EC2 instance - default t3a.xlarge - image running Ubuntu 24.04 currently
○ EBS 6000 IOPS gp3 storage
○ ENI

● Security group + egress rule to reach S3
● New IAM role for EC2
● New IAM policy for accessing RDS, accessing docker images from Rapydo’s

ECR
● Optional: frontend (web interface of Rapydo) TLS certificate created in Ubuntu

during deployment or generate and deploy your own TLS certificate

Expected time to deploy solution: ~30 minutes

Architecture diagram of typical deployment

Unset

Security

Please always follow AWS Well Architected and Security Shared Responsibilities
policies when managing your AWS environment!

Warning - DO NOT USE AWS root account for Rapydo deployment or usage.

There are no resources with public access deployed by Rapydo.
Rapydo does NOT store customer sensitive data - we only handle RDS metadata.
You are responsible for protecting your RDS instances with encryption.

Rapydo adheres to least privilege principles within AWS deployments as well.
● IAM role created for EC2 instance deployed

RoleName: !Sub "rapydo-scout-ec2-role-${AWS::StackName}"
Description: A role assigned to Rapydo EC2 instances
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: ec2.amazonaws.com

Version: "2012-10-17"
ManagedPolicyArns:
- arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy
- !Ref RapydoDockerRegistryAccess

Unset

● IAM policy created to provide access to RDS configuration and operational
data

DBScoutPolicy:
Type: AWS::IAM::Policy
Properties:
PolicyName: !Sub 'RapydoDBScoutPolicy-${AWS::StackName}'
PolicyDocument:
Version: '2012-10-17'
Statement:
- Action:

- rds:DescribeDBClusters
- rds:DescribeDBInstances
- rds:DescribeDBParameters

Effect: Allow
Resource:
- !Sub "arn:aws:rds:${AWS::Region}:${AWS::AccountId}:cluster:*"
- !Sub "arn:aws:rds:${AWS::Region}:${AWS::AccountId}:db:*"
- !Sub "arn:aws:rds:${AWS::Region}:${AWS::AccountId}:pg:*"

- Action: cloudwatch:GetMetricData
Effect: Allow
Resource: "*"

Roles:
- !Ref RapydoScoutEC2Role

Unset

● IAM policy to provide access to the Rapydo docker image in Amazon ECR
hosted in Rapydo’s AWS account (jsx)

RapydoDockerRegistryAccess:
Type: AWS::IAM::ManagedPolicy
Properties:
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Action:
- ecr:GetDownloadUrlForLayer
- ecr:BatchGetImage

Resource:
- !Sub "arn:aws:ecr:${AWS::Region}:941803196984:repository/*"

- Effect: Allow
Action:
- ecr:GetAuthorizationToken

Resource:
- "*"

ManagedPolicyName: !Sub
"rapydo-docker-registry-access-policy-${AWS::StackName}"

● Before deployment, customer is required to create a key pair for accessing
Rapydo EC2 instance over SSH, and select it during the CFT deployment

● Rapydo advises customers to store related secrets in AWS Secrets Manager or
Hashicorp Vault

● Encryption
○ You are responsible for protecting your RDS instances with encryption.
○ You can disable IMDSv1 for the EC2 instance Rapydo creates through

the CFT.

Infrastructure costs of Rapydo deployment in your account

Please check the resources created in the Overview chapter.
Your main additional AWS infrastructure cost will impact from the

● EC2 resource created for Rapydo
● CloudWatch metrics consumed (GetMetricData)

For your current AWS pricing consult with your FinOps expert, check AWS calculator or
contact your AWS Account manager.

Sizing

● For EC2 instance, we suggest that you pick **t3a.xlarge** size by default. Only
x64 instance types are supported (no Graviton support currently).

● For customers running a large number of RDS systems (100+), we suggest
picking EC2 instance size **r7a.xlarge**

● For EBS storage we define 6000 IOPS gp3 storage for our EC2 instance by
default, please change this to 12 000 IOPS if you are running a large number of
RDS systems (100+)

Health Check

In order to validate if your Rapydo instance is running in a healthy (green) status,
please check the following in Rapydo and in your AWS console:

1. Try logging in to Rapydo web console
2. list of RDS instances in the console is initially empty, once you have onboarded

RDS instances into Rapydo, you can see in the Database Details View in our
console if RDS instance metadata/config information is loaded

Unset

Backup, Recovery and Maintenance

● Backup and Recovery
○ You should protect the operational data in Rapydo in the following way:

■ EBS snapshots can be used
■ AWS Backup can be used to back up the EBS of the Rapydo EC2

instance

● Routine Maintenance
○ Recurring actions or monitoring you should run on Rapydo EC2 instance

(updating etc)
○ Cloudwatch can be used to follow Rapydo EC2 instance metrics
○ TLS certificate rotation for the web console
○ EC2 OS Patching is customer responsibility using Ubuntu default or

other centralized patching solutions.
○ Rapydo itself is updated through container update through ECR with the

following commands (jsx):

rapydo-update
rapydo-restart

● AWS service limits: Rapydo itself is not going to hit any AWS service limits, if
your RDS instances need to be adjusted, please follow standard AWS
procedures for account service limit changes

● Emergency Maintenance
○ If your Rapydo EC2 instance crashes and is not restarting:

■ Redeploy Rapydo CFT, and restore your connections to RDS, or
restore your AWS Backup or EBS Snapshot

Unset

Unset

Support

● Rapydo offers a standard support offering (single tier) to our customers, with a
guaranteed response time specified in your own contract with Rapydo.

● Support is available through email: support@rapydo.io and Slack
● If any problems in your RDS instances need AWS support, you need to use your

own AWS support subscription to open ticket with AWS

Deploy using the CloudFormation template

1. Deploy the required AWS resources using the CloudFormation template
through this link. Fill out the parameters to match your environment.
Make sure you’re deploying to your preferred region.

2. When the deployment completes a new EC2 instance will be running. Make
sure it is accessible using SSH and log into it as the `ubuntu` user.

3. Make sure there’s access from the instance to the target MySQL DBs you’d like
to monitor on port 3306 (bash):

mysql -h <rds-endpoint> -u<user> -p

4. Create an admin user by running (bash):

create-admin-user

5. Open your browser with the address of the EC2 instance running Rapydo and
login using the credentials created in the previous step.

mailto:support@rapydo.io
https://console.aws.amazon.com/cloudformation/home#/stacks/create/review?templateURL=https://rapydo-deployment.s3.amazonaws.com/cf-templates/rapydo-scout-single-instance.yaml

Configuring Rapydo Scout

1. Adding databases to Rapydo Scout: In the `Databases Details` screen, select
`Configure Databases`. You should see all the MySQL instances existing in the
same region:

2. Select the databases to start monitoring and click on the setup button in the
right top corner

3. Provide the master user name and password of the RDS instance - Those
credentials are not being stored anywhere and used only for a one-time
connection to create a Rapydo user in the selected databases.

Note: If selected multiple databases we assume that all of them have the same
credentials. If having different credentials those databases will have to be configured
one by one.

4. After adding one or more databases to the system we’ll be able to monitor
them in the `Queries` screen. Change the selected database using the `DB
HOST` filter on the right side.

5. Click on the layout toggle button in the right top corner in order to move to a
table display of all current queries running in the database.

