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Microfluidic Modulation Spectroscopy as a Non-Destructive
Structural Characterization Technique: A Case Study Using Bovine
Serum Albumin

Introduction

Protein structural characterization is crucial at almost all stages of the biological drug development life
cycle because structure determines function. In early discovery and development, sample volumes can
be scarce, and sample concentrationis often limited. In many protein characterization techniques, such
as LCMS, DSC, and NMR to name a few, samples are not normally recovered because some important
properties, such as the structure of the protein, are permanently altered. The AQS®pro, powered by
Microfluidic Modulation Spectroscopy (MMS), is a powerful, mid-infrared (mid-IR) spectroscopy tool that
delivers extremely high-quality data and offers significant improvements in sensitivity, dynamic range, and
accuracy for protein analysis compared to conventional mid-IR and far-UV CD techniques.>? Additionally,
MMS is non-destructive. If MMS is run as one of the first analysis techniques in the characterization
workflow, the sample can be recovered post-analysis and be reused by additional biophysical
characterization tools, making the MMS analysis essentially free from a sample consumption perspective.

A previous study involving lysozyme in water® demonstrated that MMS can be used as a non-destructive
technique with a sample yield of 90%. In this subsequent study we use a more complex sample, bovine serum
albumin (BSA) in phosphate buffered saline (PBS), to further validate the non-destructive nature of MMS. Our
results show that the structures of the BSA samples were almost identical before and after analysis with >99%
similarity. Furthermore, we demonstrate that by re-concentrating the post-process diluted sample back to the
original volume, the recovery rate is approximately 95% with >99% similarity compared to the original sample.
Such a high recovery rate and similarity ensure that the same exact samples can be used for any follow-up
orthogonal studies for head-to-head comparisons, or for a full biophysical characterization.
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Figure 1. Schematic illustration of the protein recovery and re-concentration workflow for MMS analysis

Methods

Bovine serum albumin (BSA) lyophilized powder (Sigma #5470) was dissolved at 5 mg/mL in 1x phosphate
buffered saline (PBS) at pH 7.4. Nine replicates of this sample were run on the AQS®pro at 5 psi backing
pressure, 1 Hz modulation, and re-collected from the fraction collector port on the AQS3pro system post-
analysis (MMS Analysis 1). Figure 1 shows the workflow of the full protein recovery process. The collected
sample from “MMS Analysis 1” was separated into two aliquots. The first aliquot was re-analyzed via MMS
(MMS Analysis 2) without any additional pre-treatment. The second aliquot was re-concentrated to the pre-
analysis volume with the goal of matching the original BSA concentration using Pierce™ 10k molecular
weight cutoff (MWCO) concentrators (re-concentrated sample) prior to re-analysis (MMS Analysis 3).
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2C. The collected sample at 1.62 mg/mL

is approximately a 3-fold dilution of the

original sample calculated at 4.75 mg/mL.

This is expected as the instrument modulates the sample with its reference buffer through the flow cell to allow for a real-time buffer
subtraction, hence resulting in dilution of the of the collected sample. The re-concentrated sample measured at 4.5 mg/mL is 94.7% of
the original concentration. Thus, the recovery yield is 94.7% given that the volumes of the original and re-concentrated samples are the
same. The loss of 5.3% of the materials is due to the efficiency of the concentrator and this yield is within the specifications of the Pierce™
Protein Concentrators (>90% recovery).

Il. Absolute Absorbance and Second Derivative

The raw differential spectra were interpolated and normalized for protein concentration to obtain the absolute absorbance spectra shown
in Figure 3A . There are three different samples and nine replicate spectra (three replicates per sample) in Figure 3A, but they are completely
overlayed and no spectral difference can be visually observed. To further highlight the spectral details, the second derivative plots of the
absolute absorbance spectra are shown in Figure 3B. Some subtle spectral differences can be seen in the tail regions of the plot in Figure 3B,
but the tail regions are less significant with respect to a protein’s secondary structure. However, the peak region at 1656 cm™! of these spectra
is still indistinguishable. Our results
demonstrate that the secondary
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Results, continued
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Figure 4. A) Similarity plot derived from the inverted and baseline
subtracted second derivative plots from Figure 3B. B) Table showing
the repeatability of each sample and the sample-to-sample similarity
using the original 5 mg/mL sample as the reference.
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Conclusions

Non-destructive protein characterization techniques are
advantageous over destructive techniques such as LCMS
and DSC, especially during the early discovery stage of drug
development when samples are limited. MMS is a non-
destructive, microfluidic, spectroscopic technique, which
provides highly reproducible and sensitive measurements for
protein secondary structures. We demonstrated in this study
that the structure of BSA maintained >99% similarity before and
after MMS analysis. Since MMS dilutes the collected samples,
we also re-concentrated the collected samples and re-analyzed
them on MMS. The recovery rate was approximately 95% and
the structural similarity was over 99% compared to the original
sample, demonstrating the ability to recover, re-use, and re-
analyze samples after MMS analysis. This feature of MMS is
particularly beneficial for studies where samples are extremely
precious, allowing users to save time and the expense of
producing more material.
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